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 ABSTRACT 

The incidence and severity of sweetpotato virus disease (SPVD) was reported to be highly variable 

under different agroecological zones in Uganda, a situation that could be partly attributable to 

differences in temperature. This raised a need for understanding the effect of temperature on the 

biology of SPVD causative agents which ultimately influences disease development and symptom 

expression that undermines productivity among sweet potato cultivars. This study was carried out 

at Makerere University Agricultural Research Institute, Kabanyolo (MUARIK). Initially clean 

sweet potato cultivars were inoculated with two viruses namely Sweet potato chlorotic stunt virus 

(SPCSV) and Sweet potato feathery mottle virus (SPFMV) that cause SPVD when co-infecting 

sweet potato and established at two temperature environments; field and glasshouse, followed by 

a weekly interval monitoring of the plants for symptom expression and growth response. 

Temperature differences significantly (p<0.001) influenced SPVD severity and the growth 

response of different sweet potato cultivars. Overall, the plants under field conditions where 

temperature was lower produced higher SPVD severity than under glasshouse where higher 

temperatures were recorded. SPVD severity for most of the cultivars was higher in the field than 

under glasshouse. Cultivar (cv.) Ejumula displayed the highest severity levels followed by cvs. 

Tanzania and Beauregard. Conversely, New Kawogo, Dimbuka and Naspot 1 showed none to mild 

severities particularly under the glasshouse conditions. Therefore temperature influenced the 

development of SPVD; low temperatures of 20 to 29°C produced more disease severities than high 

temperatures of 30 to 39oC. It is suggested that reasonably high temperatures under a controlled 

environment should be incorporated in any sweet potato seed production system for possible 

elimination of SPVD. 
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 INTRODUCTION 

Sweet potato (Ipomoea batatas, family Convolvulaceae) is 

of  great  importance  to  Uganda   and   other   African countries such as Rwanda and Burundi 

because of its various food  and  feed  uses  (Kpaka  et  al.,  2013).  The  sweet potato (orange-

fleshed varieties) also plays a key role in alleviating vitamins A, B and E deficiencies, which are 

rampant among children in Sub-Saharan Africa at more than 40 and 21.1% (127 million) of pre-
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school children and 5.6% (7.3 million) of pregnant women worldwide (HarvestPlus, 2012; Kpaka 

et al., 2013). According Kpaka et al. (2013), Uganda is the biggest producer of sweet potato in 

Africa but its low average yield of 4.58 t/ha (compared to experimental yield estimates of 25 t/ha) 

makes it impossible to satisfy the country’s production demand. Major constraints such as pests 

and diseases explain the crop’s current low yields (Kpaka et al., 2013; Sanginga and Mbabu, 2015). 

The most serious pest is the sweet potato weevil. The other pests include aphids (Myzus persicae), 

whiteflies (Bemisia tabaci), mites and caterpillars (Sanginga and Mbabu, 2015). The diseases 

which undermine the crop’s productivity are mainly viral and some of these viruses are sweet 

potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus (SPFMV); vectored 

by whiteflies and aphids, respectively (Wasswa, 2012). The two viruses synergize to produce 

sweet potato virus disease (SPVD) (Gibson et al., 2014). SPVD is the most important disease of 

the crop that threatens sweet potato in the tropics (Kpaka et al., 2013). It causes yield losses of up 

to 95%; there are no reports of immune cultivars (Adikini et al., 2016; Gibson et al., 2014; 

Sanginga and Mbabu, 2015). However, there exist good levels of SPVD resistance among the 

commonly grown sweet potato varieties in high infection areas (Kpaka et al., 2013). It is notable 

that some of the locally adapted cultivars like New Kawogo are more SPVD resistant than others 

(Gibson et al., 2014; Wasswa, 2012). Environmental conditions also seriously influence the 

productivity of sweet potato and these include temperature extremes (15 to 35°C for sweet potato 

growth), humidity and rainfall patterns and intensity, among other factors (Gibson et al., 2014; 

HarvestPlus, 2012). This study was focused on gaining an insight into the effect of temperature on 

the development of SPVD and growth of sweet potato. 

Viruses that infect and replicate well in their hosts tend to decrease the survival of the hosts by 

affecting their growth and development (Gibson et al., 2014). In addition, the incidence and 

severity of pathogens is strongly influenced by the interaction of temperature, vectors, hosts, and 

pathogen genetics (Adikini et al., 2016; Mwanga et al., 2016). From one environment to another, 

climatic aspects namely rainfall patterns and intensity, relative humidity, wind speed and direction, 

and temperature tend to differ and fluctuate none equivocally (Mwanga et al., 2016; Sabaghnia et 

al., 2012). 

Such changes influence the epidemiology of plant diseases and may also affect disease expression 

(Gibson et al., 2014; Wasswa, 2012). Previous studies reported that some areas such as central 

Uganda had higher SPVD incidences and severities than for instance the 

eastern  region  (Adikini  et  al.,  2016).  The  two  regions  differ in average ambient temperature, 

among other climatic aspects; with the eastern being hotter than the central region. It has been 

suggested that high temperature favours recovery from SPVD (Adikini et al., 2016; Gibson et al., 

2014).  There are increasing reports on rise of SPVD outbreaks in traditionally disease free agro-

ecologies in Uganda. The new epidemics could be associated with changes in climatic conditions 

especially temperature and humidity. The temperature range in which the sweet potato crop can 

grow is reportedly 15 to 35°C but most pathogens also thrive in the same temperature range 

(HarvestPlus, 2012; Seidl Johnson et al., 2014). An optimum temperature for the satisfactory sweet 



potato crop productivity and its recovery from the SPVD is not established (Gibson et al., 2014). 

There is also limited knowledge on the relationship between sweet potato growth response among 

cultivars and SPVD development at different temperatures. The main objective of this study was 

to generate knowledge about the effect of temperature on SPVD development. The specific 

objectives of this study were: (i) To determine the effect of temperature on the expression of sweet 

potato virus disease symptoms, and (ii) To characterize the growth and physiological response of 

sweet potato cultivars at different temperatures. Results from this study are expected to contribute 

towards improvement of sweet potato crop productivity through exploitation of high temperatures 

in controlled environments (such as the screen house) for SPVD management. 

 

 MATERIALS AND METHODS 

Plant materials 

Six sweet potato cultivars used in this study were collected from MUARIK and Namulonge 

(NaCRRI) research stations located in Wakiso district in Uganda. The cultivars selected for use in 

this study were based on their diverse attributes (Table 1). Different sweet potato cultivars were 

used in this study so as to ensure inclusion of genotypes of various attributes such as high yield, 

SPVD tolerance or resistance, nutritional value and farmer preference. Some varieties are more 

readily infected by SPVD than others even when exposed to similar amounts of inoculums. New 

Kawogo is reportedly more resistant to SPVD than other cultivars (Gasura and Mukasa, 2010; 

Mwanga et al., 2016). Beauregard is an orange – fleshed variety rich in beta carotene, a precursor 

for vitamin A; and is highly preferred in some countries like Australia (HarvestPlus, 2012). In the 

selection process, consideration was put to ensure the inclusion of orange and non-orange fleshed 

cultivars. These were New Kawogo, Dimuka, NASPOT 1, Beauregard, Ejumula and Tanzania. 

During the cultivar samples collection, only vines were obtained from the research stations since 

they are the locally common sweet potato propagation materials. Each of these cultivars were then 

delivered on the experimental site and established in an SPVD vector proof screen house. 

 

 



Experimental design 

Six sweet potato cultivars were  collected  for  use  in  the  field  and glasshouse experiment at 

MUARIK. The samples were indexed for sweet potato viruses namely SPCSV and SPFMV using 

an indicator plant Ipomoea setosa. Vines in each cultivar found to be free from the said viruses 

were then multiplied under the vector proof screen house in order to raise a sufficient number of 

planting materials for the experiments. Five plants per cultivar for each temperature regime were 

graft inoculated with scions known for presence of SPCSV and SPFMV. Single isolates of SPCSV 

and SPFMV which were confirmed earlier using PCR technique by Wasswa et al. (2012)and kept 

in a vector-proof screen house at MUARIK were used from two respective plants of a common 

cultivar Ejumula. Before use in this study, indexing for verification was carried out by grafting on 

I. setosa. The plants were multiplied and bud grafting in which the scions were the infectious 

material was used. The inoculated plants were observed in two environments namely the field and 

an insect proof glasshouse at MUARIK. Plants which were inoculated were potted one week before 

planting of the controls. The controls were the non-inoculated plants planted on the day of 

inoculation. The plants were planted in pots of uniform size, with a soil volume of 3,234 cm3. One 

plant was planted per pot. In the field, watering was done only when it had not rained for a period 

of four consecutive days to avoid desiccation. In the glasshouse, plants were watered regularly 

after every two days,  in  the  morning hours to ensure that the soil remained saturated. 

Data collection and analysis 

Data collection on SPVD severity (on a most symptomatic leaf where applicable) and sweet potato 

plant growth response in the field and glasshouse was done at a 1 - week interval for 10 weeks, 

starting at 2 weeks after inoculation. The foliage of each plant was the observational unit. Disease 

expression was monitored based on visual virus symptoms. Disease incidence was recorded by 

counting the number of plants showing symptoms, and expressing it as a percentage. SPVD 

severity was recorded at a scale of 1 to 5 as modified from Gasura and Mukasa (2010), where: 1 = 

no apparent symptoms; 2 = <1/10 of the leaves/leaf surface has symptoms; 3 = 1/10 to 3/10 of the 

leaves/leaf surface shows symptoms; 4 = 3/10 to 1/2 of the leaves/leaf surface shows symptoms; and 

5 = >1/2 of the leaves/leaf surface has symptoms (Figure 1). Field mercury thermometers were used 

to take record of daily temperature as it fluctuated both in the field and glasshouse, from which 

average weekly temperatures were computed for correlation with SPVD symptom expression. An 

analysis of variance (ANOVA) was carried out using GenStat 13th edition, at a  5%  level of 

significance. Average temperature was recorded as the average of the maximum and minimum 

temperature of the day and at 8:00 am and 1:00 pm. 



 

he data on growth parameters of length of internodes, stem length, number of auxiliary shoots, 

number of leaves and tuber yield was collected from the field and glasshouse. The length of 

internodes and stem length was recorded in centimetres (cm). Tuber yield was obtained at 14 weeks 

after planting by harvesting the plants in pots, washing the tubers off the soil and thereafter 

weighing. Yield data were recorded in grams per pot (g/pot), which was the same as grams per 

plant since each pot was planted with a single vine of uniform length, 10 cm. Means and probability 

values were generated by subjecting the internode length, stem length, number of auxiliary shoots, 

number of leaves and tuber yield data to ANOVA at 5% significance level. Field 1, Glasshouse 1, 

Field 2 and Glasshouse 2 were used to denote SPVD non-inoculated plants in field, SPVD non-

inoculated plants in glasshouse, plants inoculated with SPVD viruses in field and plants inoculated 

with SPVD viruses in glasshouse, respectively the results section. 

 RESULTS 

SPVD severity and temperature fluctuations 

There was a significant difference (p<0.001) in SPVD symptom expression between the 

glasshouse and field environments. Less severity score averages were recorded in the glasshouse 

(2.397) than in the field (2.89). Overall, sweet potato cultivar Dimbuka in the glasshouse was the 

least severely affected whereas the highest SPVD scores were observed on Beauregard in the field. 

In the  field,  New  Kawogo  showed  the  lowest mean disease score (1.8) followed by Naspot 1, 

Dimbuka, Ejumula, Tanzania, and Beauregard with the highest disease core of 3.86 (Figure 2). In 

the glasshouse, Dimbuka displayed the lowest score (1.66) followed by Naspot 1, New Kawogo, 

Tanzania, Ejumula, and Beauregard with the highest score (3.18). Across the two environments, 



New Kawogo had the lowest SPVD score (1.89) followed by Dimbuka and Naspot 1 at score 2.18, 

Ejumula, Tanzania and Beauregard with the highest score (3.52). As field temperature increased, 

glasshouse temperature increased. Similarly, as the field temperature decreased, the glasshouse 

temperature generally decreased in a corresponding manner. In the field, considering results during 

a period of three to ten weeks after planting, the lowest SPVD scores were obtained at different 

mean weekly temperatures. For instance New Kawogo showed its lowest disease score at 26.0°C 

(week 10); Dimbuka and Naspot 1 at 28.9°C (week 4), 25.4°C (week 7), and  25.4°C (week 8) 

though Naspot 1 showed a low score also at 21.3°C (week 5);  Beauregard and Ejumula at 25.4°C 

(week 7); and Tanzania at 28.9°C (week 4). On a weekly interval, SPVD symptom scores generally 

varied from one cultivar to another as temperature also varied. For New Kawogo, it was observed 

that symptom development did not change systematically with plant age unlike the rest of the 

cultivars where severity scores generally increased with plant age, with Tanzania showing the 

clearest forward trend (Table 2).  



 

 

SPVD symptoms on cv. Tanzania in the field  increased gradually from week 1 to week 10, 

irrespective of temperature fluctuations (Figure 3). A slightly similar trend was observed in the 

glasshouse but the rate of symptom development increased less steadily and to a lower maximum 

than in the field.  In the glasshouse, the lowest SPVD scores after three weeks were obtained at 

30.0°C (week 9), 30.0°C (week 9), 34.2°C (week 8), 34.2°C (week 7), 34.2°C (week 7) and 28.3°C 

(week 5) for New Kawogo, Dimbuka, Naspot 1, Beauregard, Ejumula and Tanzania respectively. 

The highest scores were observed at 28.3oC (week 5), 34.1oC (week 4), 34.0oC (week 4), 34.1oC 

(week 4), 28.3°C (week 5) and 33.3°C (week 10) for New Kawogo, Dimbuka, Naspot 1, 

Beauregard, Ejumula and Tanzania, respectively. SPVD scores for New Kawogo increased from 



week 1 to 5, remained constant up to week 7 and then it declined. A similar trend was observed 

for Dimbuka and Naspot 1. Generally, SPVD scores increased with plant age for Beauregard, 

Ejumula and Tanzania. 

 

In the case of New Kawogo in the field, as plant age increased, SPVD severity increased less 

slightly from a score of 1 (no symptoms) at the first and second week to 2 (<1/10 of the leaves or 

leaf surface had symptoms), thereafter remained unchanged from week 3 up to week 6, beyond 

which the scores oscillated between 2.10 and 2.25, and declined to 1.5 at week 10. In the 

glasshouse, SPVD symptoms developed increasingly from the first week at score 1 to 3 at week 5, 

remained constant up to week 7 and then reduced decreasingly up to the 10th week (Figure 4).  



 

Growth response 

  

Length of internode per plant (cm) 

  

There was a significant difference (p<0.001) in internode length between the two environments at 

a 5% significance level, with the highest mean for non-inoculated plants in glasshouse (3.23 cm) 

followed by inoculated plants in glasshouse, non-inoculated plants in field, and inoculated plants 

in field had the shortest internodes (1.91 cm) (Table 3). Significant still was the difference 



(p<0.001) in internode length among different cultivars. Generally, longer internodes were 

observed among non-inoculated plants than in presence of SPVD. Apart from New Kawogo 

cultivar whose plants had longest internodes in absence of SPVD in the field, the rest of the 

cultivars had highest internode lengths in absence of the disease in glasshouse. Plants with shortest 

internodes for New Kawogo were observed in presence of SPVD in glasshouse whereas for the 

remaining cultivars, shortest internodes are recorded from inoculated plants in the field. Across 

environments, Beauregard had the highest internode length (4.51 cm) followed by New Kawogo, 

Dimbuka, Naspot 1, Tanzania, and Ejumula with the shortest internodes (1.80 cm). Beauregard 

had the highest internode length across environments and SPVD treatments while Ejumula 

produced the shortest internodes in the field on SPVD inoculated plants. 

 

On a weekly interval, internode lengths generally increased at a decreasing rate for all the cultivars. 

Cv. Beauregard, however, stood out with the longest internodes (Figure 5).The longest internodes 

were obtained in the glasshouse. Beauregard achieved the longest internodes among SPVD free 

plants in the glasshouse followed by SPVD inoculated plants in glasshouse, SPVD free plants in 

field and the shortest internodes were recorded from SPVD inoculated plants in the field (Figure 

6). 



 

 

Stem length per plant (cm) 

  



The difference ins tem length was significant (p<0.001)  between the two environments, with a 

higher mean in the glasshouse on non-inoculated plants (55.1 cm) followed by glasshouse on 

SPVD inoculated plants, field on non-inoculated plants, and the shortest plants were obtained in 

the field in presence of SPVD (19.6 cm) (Table 4). The difference among cultivars was also 

significant (p<0.001). Similar to the trend of internode lengths, apart from New Kawogo which 

had its longest plants in field in absence of SPVD, the rest of cultivars registered their highest stem 

lengths in glasshouse in absence of the disease. Unlike in the trend of internode lengths, the shortest 

plants for all the six cultivars were observed in the field in presence of SPVD. Across 

environments, Beauregard had the tallest plants (83.2 cm) followed by New Kawogo, Tanzania, 

Dimbuka, Naspot 1, and Ejumula had the shortest plants (24.4 cm) (Figure 7). An in-depth 

description of stem length variation was based on Beauregard; and it further illustrated that the 

longest plants were observed in the glasshouse where temperatures were higher than in the field  

(Figure  8).  SPVD  free  plants   were   longer   than infected plants. Beauregard both inoculated 

and non-inoculated produced the longest plants in glasshouse while the shortest plants were 

observed in the field among SPVD inoculated plants, with the Ejumula being the shortest. 



 

 

Overall, across environments and inoculation levels, stem length for all cultivars increased at 

constant rates throughout the time of the experiment. Cv. Beauregard had the highest rate of 

increase in stem length followed by New Kawogo. Tanzania, Naspot 1 and Dimbuka have similar 

curve trends. Cv. Ejumula’s stem length was the shortest, having the lowest increase rate. 



  

Number of shoots per plant 

  

The highest shooting tendency was observed in the glasshouse on non-inoculated plants while the 

lowest number of shoots was recorded in the field on SPVD inoculated plants. The  figure  shows  

that  Ejumula  (both non- and inoculated in glasshouse) was leading followed by New Kawogo 

(both non- and inoculated in glasshouse) while Beauregard had the lowest number of shoots. The 

number of shoots differed significantly (p<0.001) between the two environments, with a higher 

mean number on non-inoculated plants in glasshouse (10.07) followed by inoculated plants in 

glasshouse, non-inoculated plants in field, and SPVD inoculated plants in the field had the lowest 

number of shoots (0.7) for non-inoculated plants (Table 5). Sweet potato cultivars also 

significantly differed (p<0.001)  in  the  number  of  shoots produced. All the cultivars produced 

their highest numbers of shoots on non-inoculated plants grown in glasshouse while the least 

numbers of internodes were produced on SPVD inoculated plants in field. By the 10th week across 

environments and inoculation levels, Ejumula had the highest shooting tendency followed by New 

Kawogo, Dimbuka, Tanzania, Naspot 1 and Beauregard with the least number of shoots (Figure 

9). Using the case of Ejumula, the highest shooting tendency was observed in the glasshouse in 

absence of SPVD followed by inoculated  plants  in  the  glasshouse,  SPVD non-inoculated plants 

in the field and plants and SPVD inoculated plants in the field had the lowest shooting tendency 

(Figure 10). 



 



 

 

Number of leaves 

There was a significant difference (p<0.001) in number of leaves between the two environments, 

with the highest mean leaf number in glasshouse on non-inoculated plants (21.82) followed by 

SPVD inoculated plants in glasshouse, non-inoculated plants in filed, and SPVD inoculated plants 

in the field produced the lowest  number of leaves (10.37) (Table 6). The difference among 

cultivars was also significant (p<0.001). For all the six cultivars, their highest mean number of 

leaves were observed on non-inoculated plants grown in glasshouse while their  lowest leaf 

numbers were recorded on SPVD inoculated plants grown in the field (Figure 11). Across 

environments, New Kawogo produced the highest mean number of leaves (21.45) followed by 

Beauregard, Ejumula, Tanzania, Naspot 1 and Dimbuka with the lowest number of leaves (14.30). 

The highest foliage number was observed on the SPVD non-inoculated New Kawogo in the 

glasshouse followed by SPVD inoculated New Kawogo in the glasshouse, and  the  lowest  number 

on inoculated Ejumula in the field. By the 10th week, New Kawogo had the highest number of 

leaves followed by Beauregard, Ejumula, Tanzania, Naspot 1 and Dimbuka with the least leaf 

number (Figure 11). The highest foliage production was observed on SPVD free plants in 

glasshouse in which temperatures were higher than in the field; followed by diseased plants in the 

glasshouse, SPVD non-inoculated plants in field and the lowest foliage production was recorded 

on diseased plants in the field (Figure 12). 



 



 

Yield per plant (g) 

There was a significant difference in mean yield of different environments (p<0.001) and different 

sweet-potato cultivars (p<0.001) (Table 7). In the case of environments and SPVD inoculations, 

the non-inoculated plants in the field yielded the highest (236.2 g/plant) followed by inoculated 

plants in the field (182.9 g/plant), non-inoculated plants in glasshouse (38.5 g/plant) and inoculated 

plants in the glasshouse yielded the lowest (36.6 g/plant). Across environments, New Kawogo was 

the best yielder (199.3 g/plant) followed by Tanzania (171.0 g/plant), Beauregard, Naspot 1, 

Dimbuka, and Ejumula (47.8 g/plant). 



 

For non-inoculated plants in the field, New Kawogo was the best yielder (398.2 g/plant) followed 

by Naspot 1 (332.0 g/plant), Tanzania (329.2 g/plant), Dimbuka (147.0 g/plant), Beauregard and 

Ejumula (104.9 g/plant).  In  the glasshouse in absence of the disease, Tanzania was the best yielder 

(93.2 g/plant) followed by Dimbuka (68.2 g/plant), Beauregard (44.0 g/plant), Naspot 1, Ejumula, 

and New Kawogo (3.5 g/plant). In the case of inoculated plants in field, New Kawogo performed 

better than the rest (394.7 g/plant), followed by Beauregard, Tanzania, Dimbuka, Ejumula, and 

Naspot 1 (26.7 g/plant). However, Beauregard was the best yielder (122.5 g/plant) followed by 

Tanzania (59.8 g/plant), Dimbuka (15.7 g/plant), Ejumula, Naspot 1, and New Kawogo (1.0 

g/plant), among inoculated plants in the glasshouse. 

Yield performance was best in the field. Non-inoculated New Kawogo performed the best in the 

field and this performance was not significantly affected by  inoculation with SPVD. However, 

the same cultivar’s performance was the worst in glasshouse. Naspot 1 was the second high yielder 

in the field in absence of SPVD, followed by Tanzania, Dimbuka, Beauregard and Ejumula. In the 

glasshouse in absence of the disease, Tanzania performed the best followed by Dimbuka, 

Beauregard, Naspot 1, Ejumula,  and the poorest yielder was New Kawogo. For SPVD inoculated 

plants in the field, New Kawogo performed the highest followed by Beauregard, Tanzania, 

Dimbuka, Ejumula, and Naspot 1. For inoculated plants under glasshouse, Beauregard performed 

the best followed by Tanzania, Dimbuka, Ejumula, Naspot 1, and the poorest performer was New 

Kawogo. 

 

 

DISCUSSION 

The lower severity of SPVD on inoculated plants in the glasshouse indicates that severity reduces 

at high temperature. Similarly, the higher severity of SPVD on inoculated plants in the field 



indicates that severity increases at low temperature. Therefore, SPVD severity changes with a 

change in temperature. It also suggests that recovery tendencies of sweet potato from SPVD are 

more likely at higher temperatures. It also signals the potential for inability of SPCSV and / or 

SPFMV to reproduce, and this can lead to their elimination (Gasura and Mukasa, 2010; Gibson et 

al., 2014). It is however, probable that these two viruses are influenced differently by temperature. 

If this supposition is true, a prevailing temperature regime would significantly influence the level 

of disease that is expressed. A study into the effect of temperature on the roles of the individual 

viruses of SPVD needs to be undertaken. 

Different sweet potato cultivars were differently affected by SPVD at different temperatures. This 

implies that different cultivars exhibit differential responses to the disease as temperatures vary 

and this could suit them to different agroecologies. This is very likely because agroecological 

zones differ in a number of climatic conditions, temperature inclusive. A very low severity of 

SPVD in some cultivars like New Kawogo and very high disease scores for Ejumula, Tanzania 

and Beauregard at both environments of the field and glasshouse confirms the existence of SPVD 

resistant and susceptible varieties. This is particularly in agreement with Gasura and Mukasa 

(2010)who reported that cv. New Kawogo was resistant to SPVD. However, observations from 

this study indicate that resistance or tolerance potential of sweet potato to the disease is heightened 

at higher temperatures. The difference in internode length between plants in the field and 

glasshouse, suggests that temperature has an effect in the rate of cell multiplication and expansion 

in the internodes, with a higher temperature increasing the process. This is because the two 

environments experienced different temperature ranges. SPVD was also observed to play a role in 

length of the internodes in that presence of the disease could have limited the rate of cell growth 

around the internodes. Cultivar wise, some cultivars having manifested longer internodes in the 

field where temperatures were always lower than in the glasshouse suggests differential agro-

ecological adaptations.  This implies that cv. New Kawogo does well at lower temperature agro-

ecologies than these rest of the cultivars included in this study. However, the effect of SPVD on 

internode lengths was very conspicuous in most cultivars, for instance under same conditions of 

the field, the SPVD inoculated plants of cv. Ejumula produced shorter internodes than the non-

inoculated plants. 

High temperatures of the glasshouse caused the plants to grow taller than those in the field where 

there were low temperatures. SPVD also negatively affected the stem lengths of plants. This 

emphasizes that the disease causes dwarfing symptoms. This trend is similar as in the case of 

internode lengths which implies that tall cultivars also had long internodes. An example of such 

cultivars is Beauregard which had the longest internodes and stems. The cv. Ejumula had the 

lowest internode and stem length both in glasshouse and in the field. This implies that this cultivar 

is very severely affected by SPVD. It can be argued that SPVD in combination with high 

temperature conditions cause increased shooting tendency. This assertion is based on the 

observations in glasshouse; most clearly with cv. Ejumula in which SPVD inoculated plants 

consistently produced more shoots than the  non-inoculated  ones.  The  high  shooting   tendency 



was also associated with dwarfing. For instance, whereas the longest plants were observed on cv. 

Beauregard, the highest number of shoots was recorded on cv. Ejumula. 

High temperatures were observed to cause high vegetative growth at the expense of tuber yield. 

This is in agreement with the earlier observations by Wasswa (2010), Adikini et al. (2016)and 

Gibson et al. (2014)though most of these authors did not vary temperatures to wide ranges. Sweet 

potato infected with SPVD and grown under glasshouse conditions produce little or no tuber yield, 

and this observation concurs with that of Adikini et al. (2016). SPVD presence also influenced the 

number of leaves. Thus whereas the high temperatures of the glasshouse caused high vegetative 

growth, SPVD presence negatively affected the number of leaves per plant in all cultivars across 

environments. It is also evident that the vegetative growth response of different cultivars varies 

significantly at different environments. For the case of glasshouse conditions, cv. New Kawogo 

stood distinct from the rest of the cultivars in terms of very high leaf number however; this resulted 

into the lowest tuber yield. The cultivars having minimum leaf numbers produced a reasonable 

tuber yield under high temperatures of the glasshouse though in absence of SPVD. Such cultivars 

include Tanzania, Dimbuka and Beauregard. This suggests that different sweetpotato cultivars 

differently tolerate / resist temperature stresses. This tolerance or resistance has been based on 

tuber yielding ability because the East and Central African people grow this crop majorly for direct 

human food security (HarvestPlus, 2012). The development response of SPVD at temperatures 

higher than that in the glasshouse or lower than that in the field used in this study, is not yet well 

understood. This matter requires further investigation. A study on the effect of temperature on 

sweet potato virus load accumulation would help provide answers to this knowledge gap. 

 

 CONCLUSION 

This study indicates that temperature influences the development of SPVD. Generally, as 

temperature increases SPVD development reduces, particularly with respect to symptom 

expression. Temperatures 20 to 29°C produce more disease severities than high temperatures of 

30 to 39°C. Field conditions produce more disease severity than glasshouse conditions. SPVD also 

expresses differently among sweet potato cultivars at different temperatures. For instance, Ejumula 

is more severely affected by SPVD at high temperatures of the glasshouse than in the field whereas 

an opposite effect occurs with cv. Tanzania. New Kawogo followed by Dimbuka and Naspot 1 are 

more SPVD resistant, based on symptom expression, than the rest of the cultivars; Ejumula 

followed by Tanzania and Beauregard are the most SPVD susceptible according to this study. 

Beauregard, Tanzania and Dimbuka are more tolerant to the disease when it comes to tuber yield 

across temperature levels of the glasshouse and field than the rest of the cultivars. New Kawogo 

grows more vegetatively under high temperatures but with negligible or no tuber yield. High 

temperatures generally cause increased vegetative growth at the expense of tuber yield. Under high 

temperature and the generally uniform growth conditions of the glasshouse, there exist differences 

in cultivar growth responses. For instance, cv. Beauregard plants grow the tallest with very limited 



lateral shooting and relatively good tuber yield as compared to the rest of the cultivars. This 

suggests that some cultivars multiply better than other at high temperatures for delivery of vine 

cuttings to farmers. The development response of SPVD at a wider temperature range than that 

experienced during this experiment deserves further investigation. The results from this study 

suggest that reasonably high temperatures under a controlled environment should be incorporated 

in any sweet potato seed production system for possible elimination of SPVD. Further study into 

the effect of temperature on the SPVD is necessary.  
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