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Abstract: Above-ground biomass cover under Coffea arabica on sloping land is beneficial but difficult
to sustain. Interplanting annual and perennial legumes can sustain the above-ground biomass cover,
and improve soil fertility, yield, and profitability. This was tested on 26 sloping farms in a four-
growing season experiment on undersowing C. arabica with new crop combinations: Mucuna pruriens
var. utilis (T1); Millettia dura Dunn (T2); a combination of M. pruriens and M. dura (T3); and the control
with a no-cover legume (T4). On each farm, all treatments followed a randomized single-block
design. T3 produced 8.7 mt/ha/yr above-ground biomass that was significantly (p < 0.01) higher
than other treatments and was increasing with the seasons. Under T3, plant-available nitrogen (N)
and potassium (K) increased more than in other treatments. During the fourth season, coffee yield
in T3 was 54%, 22%, and 11% higher than in T4, T2, and T1, respectively. The gross profit under
T3 was 86% higher than in T4 in the fourth season. This indicates that interplanting a combination
of M. pruriens and M. dura under C. arabica on sloping land can sustainably increase above-ground
biomass cover, soil’s plant-available N and K, coffee yield, and profitability. Based on the results, the
combination of M. pruriens and M. dura is recommended to optimize coffee production under the
described conditions.

Keywords: agroforestry; cover crops; interplanting; Millettia dura; Mucuna pruriens; profitability;
Rwenzori Mountains; sloping land; undersown

1. Introduction

In the tropics, smallholder farmers producing Coffea arabica predominantly use high-
altitude sloping land for this purpose [1,2]. Despite such land being prone to degradation
due to limited cover [3], it remains essential for high-altitude smallholder coffee-producing
farmers [2,4]. Worldwide, coffee is generally the most important crop worth over USD
460 billion annually [5], consumed by over 30–40% of the world population with some indi-
viduals drinking over 9 kgs of coffee annually [6] of which C. arabica is the most valued [2,7].
In Uganda, Coffea arabica remains the primary source of livelihood for over 1.5 million (42%)
smallholder farmers and contributes 30% of the country’s foreign exchange [4,8,9] with in-
creasing annual export earnings above USD 862 million in 2022 and a potential of reaching
USD 2.2 billion by 2025 [10]. Since 1920, the production of C. arabica in Uganda has been
restricted to high-altitude sloping areas while the low land that is less sloping has been
left for the production of robusta coffee which is preferred for being less labor-demanding
compared to C. arabica. Additionally, in this area, C. arabica has been restricted to high
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altitudes because at this altitude the incidence of leaf rust (Hemileia vastatrix), and Antestia
bugs is low [11]. The introduction of C. arabica in these areas led to the replacement of
the mountain natural forest and vegetation cover which would otherwise support coffee
production [12,13]. The reduced natural vegetation with a negative impact on microclimate,
intense hand hoe tillage, and heavy rains leads to a loss of soil fertility and a reduction of
up to 49% coffee yield [4,9,14–16].

In Uganda, on the Rwenzori Mountain, C. arabica is cultivated by 66% of the small-
holder farmers on land of less than 1 ha [17–20]. This area faces high erosion rates of
28.9–37.5 mt/ha [21]. Furthermore, there is a negative nutrient balance due to nutrient
mining by C. arabica and the lack of recirculation of coffee husks in the system. For ex-
ample, annually 0.75 mt/ha of NPK is removed to produce 1.6 mt/ha of green coffee
beans [9]. Worse still, due to climate change, most areas below 1400 m will be unsuitable
for C. arabica production [2,15,18] thus restricting its production to more sloping land at
higher altitudes [18,22]. Such land requires a fundamental change for resetting the cropping
system to attain an economically attractive and sustainable production [23]. It is known
that smallholder farmers can increase C. arabica production from 1.6 mt/ha to 3.2 mt/ha
via appropriate management practices [9]. However, implementation of the known soil
conservation methods such as contour bands, terraces, and mulching is hindered by the
small farm sizes, high labor requirements, high maintenance costs, limited experience with
feasible soil conservation methods, and technical knowledge [15,23–30]. Amidst these
constraints, improving above-ground cover can offer a remedy without destructing the
farming system in the already established coffee fields [31–35]. However, smallholder
farmers generally find it challenging to raise the required biomass quantities for above-
ground cover [36]. Additionally, above-ground cover that would be attained through
integrating cover crops under C. arabica is considered labor-intensive [15,23]. A further
hindrance to establishing cover crops is the livestock demand for forage [17,37]. Neverthe-
less, cover crops are known to be a sustainable strategy for transitioning into sustainable
farming [38–41]. Particularly, legumes are considered important for their multiple benefits
in the farming system such as sustaining soil nitrogen, reducing soil erosion, and increas-
ing crop yield [39,42,43]. Cover legumes have been recommended as a feasible strategy
for smallholder high-altitude C. arabica farmers [8,9,28,44]. Similarly, it has been demon-
strated that cover crop mixtures increase biomass inputs in the soil [40,45,46]. For example,
Mucuna pruriens, an annual climber can creep to cover the soil surface and attain full
maturity within six growing months [47]. Generally, M. pruriens is known for its multiple
benefits to smallholder farmers [48]. Specifically, M. pruriens produces up to 30 mt/ha/yr
dry matter [47,49,50], accumulates above-ground biomass cover which reduces the cost of
weed control [51–53], conserves soil moisture [50], increases crop yield [51,52], improves
soil fertility by fixing up to 0.09–0.1 mt N/ha/yr [42,47,49–51], and increases carbon se-
questration [48,54]. Mucuna pruriens reduces soil erosion on land slopes of 15–25% [55,56]
and is among the best possible cover legumes for integration into coffee fields due to its
fast establishment [9,57]. Mucuna pruriens offers a feasible strategy in farming systems
better than artificial fertilizers [49,58]. However, the benefits of M. pruriens are known to
vary with ecological specificity and thus require adaptation studies before introducing it in
new farming systems [53,59]. Additionally, the biomass generated by M. pruriens is known
to fluctuate due to continuous planting [47,53]. Thus, we hypothesize that combining
M. pruriens with a perennial agroforestry legume can enable sustaining above-ground
biomass cover.

Agroforestry legumes have several benefits in coffee farming systems such as enhanced
soil organic carbon, an increase of nitrogen [44,60], and an improvement of the microclimate
that favors the performance of C. arabica [61–63]. One such perennial leguminous tree with
the potential of fulfilling the numerous benefits of agroforestry but is not yet studied in
farming systems is the Millettia dura. This tree is indigenous to the Rwenzori area and
was first found on river Dura in Kibale National park, Uganda [64]. Milletia dura is a
fast-growing leguminous tree that grows up to 13 m tall, with a deep root feeding system,
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and takes approximately ten years to fully mature [64]. The tree is shade tolerant, grows at
varying altitudes (1200–1650 m), accepts a broad range of soil conditions [65], and has a
high stem density [66]. In addition, M. dura has numerous medicinal values, is resistant
to pests such as termites, and produces strong agricultural tool handles [67–69]. Studies
on Millettia ferruginea, a relative of M. dura, have reported a positive impact on crop yield
and soil properties such as textural fractions, organic carbon, total nitrogen, and available
phosphorus [70,71]. However, there are no studies on M. dura in the farming system. Rather,
most studies on the genus Milletia have focused on its medicinal value [72]. This study
attempted to understand the impact of integrating this perennial leguminous tree with
an annual leguminous cover crop in the farming system. The study aimed to find out
if integrating a combination of M. pruriens and M. dura under C. arabica on sloping land
can: (1) increase above-ground biomass cover, (2) improve the availability of soil macro
nutrients, (3) increase coffee yield, and (4) increase profit from C. arabica on sloping land.

2. Materials and Methods
2.1. Description of the Study Area

The experimental study was conducted in the Rwenzori Mountains, in the Kyondo
sub-county (Figure 1), at an altitude of 1300–1800 m. The Kyondo sub-county is located in
the Kasese district at 0◦11′12.0′′ N, 30◦05′17.0′′ E in the western part of Uganda close to
the Democratic Republic of the Congo. In this area, the main crop is C. arabica, which is
grown as a monocrop. Kyondo has a total population of 27,400 coffee farmers [19]. Due to
farming on steep slopes, vulnerable soils, poor farming practices, and population pressure,
approximately 60% of the land in this area is prone to degradation [24]. The experimental
sites encompassed a total land area of 52 ha on a 45–60% slope (Figure 1). The soils in the
experimental area are erosion-prone Leptosols with pH 5–6, and predominantly loamy
sands with 46.3% sand, 45.2% silt, and 6.6% clay, indicating a high risk of degradation and
low natural fertility [73].

The study area experiences a tropical climate (Figure 2) with bimodal rainfall (short
rainfall season March-May 286 mm, 23.3 ◦C and long rainfall season August–November
375 mm, 22.9 ◦C) and an average annual rainfall of 884 mm/yr [74]. Monthly rainfall
(Figure 2) for the study area was measured using rain gauges which were installed on each
of the 26 farms during the experimental period (2018–2019).

2.2. Experimental Design and Establishment

This study involved multi-locational experiments that were established following
a randomized single-block design on 26 smallholder farms of 30-year-old monoculture
pure-stand C. arabica with no soil cover. This was done to ensure that findings from the
study apply to the varying conditions on the different smallholder farms [75]. In each
of the 26 experiments, a single experimental block with the dimensions of 55 m × 16 m
was demarcated across the slope such that all plots where the different treatments were
introduced on a particular farm were at the same gradient. To manage to implement the
experiment on the small land holding per farm (less than 1 ha per household), one block
was implemented per farm thus there were no replications per experiment.

All the plots were subjected to the traditional practice of hand hoeing three weeks
before the treatments were implemented. A buffer area of 3 m was left between the plots
as shown in Figure 3 to avoid inter-plot treatment effects. In the first growing season, the
different treatments (T1, T2, T3, and T4) were randomly allocated to the plots to minimize
errors associated with non-homogeneity between and within the experiments [76]. To
ensure that the effect in each plot was attributed to a particular treatment, the same
treatment was repeated in the specific plot for all four growing seasons. The plot-specific
management techniques implemented in the experiment are described in Table 1.
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Table 1. Management procedure of the different experimental treatments.

Date. Activity Activity Description Treatment

21 January 2018

Weed control by hoe

All weeds were cleared and turned into
the soil using a hand hoe.

T1, T2, T3 and T4

12 April 2018,
16 September 2018,

12 April 2019,
16 September 2019

T4

3 July 2018,
4 December 2018,

3 July 2019,
and 4 December 2019

After sampling for biomass, all weeds
were cleared and turned into the soil using

a hand hoe.
T4

12 February 2018

Planting the different treatments

Treatments were randomly allocated to the
plots and planted at the spacing and plant

population indicated in Figure 3.
T1, T2, T3

16 July 2018,
12 February 2019,
and 16 July 2019

Mucuna pruriens was integrated into the
specific plots where it had been planted in
the first growing season. The spacing and

seed rate is indicated in Figure 3.

T1 and T3

12 April 2018,
16 September 2018,

12 April 2019,
and 16 September 2019

Spot weeding
Weeds were removed by hand and left on

the ground surface as mulch within the
respective plots.

T1, T2 and T3

3 July 2018
and 4 December 2018

Sampling for biomass/harvesting

Above-ground biomass cover (excluding
coffee trees and M. dura trees) in each plot
was cut at the root collar and was returned
to the respective plot as a surface mulch.

T1, T2, T3 and T4

3 July 2019
and 4 December 2019

Above-ground biomass cover (excluding
coffee trees and M. dura trees) in each plot

was cut at the root collar.
Millettia dura trees were pruned according

to the guidelines by Nyombi et al. [77].
All cut material was returned to the
respective plot as a surface mulch.
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The treatments included an undersow of Mucuna pruriens var. utilis in C. arabica
(T1), Millettia dura Dunn undersows in C. arabica (T2), a combination of M. dura and
M. pruriens var. utilis undersow in C. arabica (T3), and control (T4) which was managed
following the traditional farming practices (continuous weed clearing by hand hoeing and
no cover plants). The experiment was implemented and monitored for four consecutive
growing seasons: first growing season (January–July 2018) = SR1, second growing season
(July–December 2018) = LR1, third growing season (January–July 2019) = SR2, and fourth
growing season (July–December 2019) = LR2 (see Figure 3 and Table 1). This was to
ascertain the consistency of the influence of the different treatments during the different
seasons in the studied area [75].

2.3. Data Collection
2.3.1. Above-Ground Biomass

The above-ground biomass (M. pruriens and the weeds) in each treatment was mea-
sured from a 1 m2 quadrat delineated at the center of each plot [78]. The plants within the
quadrat (except coffee and M. dura) were cut at the root collar. The biomass from M. dura
was attained by pruning the tree that was in the quadrat delineated area at the center of
the plot in T2 and T3. The M. dura tree was pruned 50% following the recommendation for
pruning trees [77]. This enabled the collection of biomass for above-ground cover sampling
without damaging the tree. For each growing season, the above-ground biomass sampling
on all 26 farms was completed on the same day. The harvested biomass from each plot
was separately oven-dried at 70 ◦C until a constant weight was obtained. To convert to
mt/ha, the measured biomass from the 1 m2 quadrat was multiplied by 10,000 m2 and for
M. dura it was multiplied by 625: the equivalent number of M. dura trees in a hectare. After
weighing the dry biomass from the different treatments it was returned to decompose in
the specific plots where it had been harvested.

2.3.2. Soil Sampling and Testing

Using a soil auger, five soil sub-samples were collected from each treatment plot at
0–15 cm. The soil samples were collected at this depth because it is the soil layer within
which C. arabica roots extract the soil’s plant-available nutrients [79]. The soil sub-samples
were collected following random sampling procedures recommended for soil sample
collection by Okalebo et al. [80]. The five sub-samples collected from each plot were
thoroughly mixed to make one composite sample per treatment. This was repeated to make
26 composite samples from the 26 farms. The first soil sampling was done in January 2018
(SR1) before introducing the treatments to the different plots. This was done to determine
the initial plant-available nutrient status of the different plots without the treatment effect.
After the four growing seasons with treatment (T1, T2, T3, and T4) application in January
2020 (end of LR2), the second soil sample collection was done following the same procedure
that was used during the first soil sampling. This was done to determine the change in the
soil’s plant-available nutrients (difference between SR1 and LR2) per treatment. The soil
analysis focused on the macronutrients (nitrogen-N, phosphorus-P, and potassium-K) in
plant-available form because these are essential in the production of C. arabica [81].

The plant-available N, P, and K in the soil samples were tested following procedures
for testing acidic soils since the soils have pH 5–6 [73]. Soil samples were first air-dried
and then passed through a 2 mm sieve. N was determined using the hot hydrogen
peroxide/potassium chloride extraction method recommended by Tié [82]. Following this
procedure, 50 mL of 25% hydrogen peroxide was added to 5 g of sieved soil in a 300 mL
conical flask. The conical flask with its content was then placed into a ventilated oven and
heated for 6 h at a temperature of 60 ◦C. The suspension was cooled and 1 M of potassium
chloride was added. The mixture was then rotated for 30 min. Ammonium Nitrogen was
determined from the filtrate through distillation. Plant-available P was determined through
Bray 1 extraction method according to the procedure by Kovar and Pierzynski [83] where
20 mL of Bray1 extraction solution (0.025 M hydrochloric acid) in 0.03 M of ammonium



Sustainability 2023, 15, 2453 7 of 16

fluoride was added to 2 g of soil in a conical flask. At room temperature, the flask with its
contents was shaken at 200 revolutions per minute. The plant-available P was measured
from the filtrate by use of a VWR- UV- 6300PC spectrophotometer at a wavelength of
880 nm [83]. Plant-available K was determined following a flame photometry procedure
with ammonium acetate extractant [80,84] where 100 mL of ammonium acetate extractant
was added to a conical flask containing 5 g of the air-dried soil samples. The flask and its
contents were shaken at 200 oscillations per minute for 30 min and the solution was left to
settle for 30 min. The supernatant was filtrated through the Whatman No. 42 filter paper
and the extracted solution was 10 times diluted. Five (5) mL of the solution was pipetted
into a 50 mL volumetric flask and 1 mL of lanthanum chloride solution was added. The
contents were then diluted with ammonium acetate extractant solution. The content of K
was then determined by spraying the soil extract, lanthanum chloride, and ammonium
acetate solution onto the flame of a PFP7 model flame photometer.

Percentage change in N, P, and K was calculated as follows (Equation (1)):

Percentage change in avaible nutrients =
(Available amount in 2020)− (Available amount in 2018)

(Available amount in 2018)
∗ 100 (1)

2.3.3. Coffee Yield

Fresh red coffee cherries were harvested by hand from three randomly selected coffee
trees at the center of each plot following the recommendation by Langton [85] to avoid
border effects. Four harvesting seasons were observed; November 2018–January 2019:
associated with SR1; April 2019–July 2019: associated with LR1; November 2019–January
2020: associated with SR2 and; April 2020–July 2020: associated with LR2. Coffee was
harvested from the same coffee trees in each plot for all four harvesting seasons to avoid
changes in yield due to coffee tree variations. For every harvest season, harvesting of
fresh red coffee cherries was done on the same day on all 26 farms. Harvesting in each
season was done at an interval of two weeks to ensure that only fully ripe red cherries
were harvested. This was repeated until all the cherries on each of the selected coffee trees
were harvested during a particular harvest season. The red coffee cherries from each plot
were separately dried under a shed on raised screens until a constant moisture content
(12% which is appropriate for further processing and selling of the coffee) determined by a
moisture meter was attained. The coffee weights per treatment were converted to mt/ha
by multiplying the average yield per coffee tree by the total number of coffee trees (1111) in
a hectare.

2.3.4. Profitability

The input (total variable costs-TVC) i.e., the seed and labor for planting, weeding, and
harvesting costs for each treatment on each farm were recorded in Uganda shillings by
the farmers with guidance from the researchers. This data was converted into USD/ha
to determine the TVC. Equally, the prices for the dry coffee cherry and the dry biomass
were based on farm gate prices at USD 750/mt and USD 28/mt respectively. The dollar
(USD) exchange rate was determined from the local bank rates (22 May 2020) for Uganda
shilling at 3710/USD 1. The data were used to calculate the profitability of each treatment
following the formula (Equations (2) and (3)) adopted from [86,87]:

GP = R − TVC (2)

R = [DCW × PC] + [DBM × PD] (3)

where:
GP—Gross profit
R—Revenues
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TVC—Total variable costs (cost of seed, labor for planting, weeding, and harvesting)
for implementing each treatment (USD). Fixed costs were constant across all treatments
and therefore were not included in the calculation.

DCW—Total dry coffee yield (mt/ha)
PC—Price per mt of dry coffee (USD)
DBM—Dry biomass yield (mt)
PD—Price per mt of dry biomass material (USD)

2.4. Statistical Analysis

AgroR [88] and SPSS 18 were used to run a joint analysis of experiments conducted in
a randomized single-block design with balanced data. Here, the data was considered as
arising from 26 separate experiments (farms) and the interest was to fit a multiple linear
regression model for each of the response variables (biomass, coffee yield, profit, and
soil’s plant-available macronutrients). The dependent variables were treatment (made
up of T1, T2, T3, and T4), season (made up of SR1, LR1, SR2, and LR2), and experiment
(made up of the 26 experiments analyzed together). The ANOVA results showed that the
experiment was not significant (p = 0.16) while both treatment and time (season) were
significant (p < 0.01) predictors of the response variables (biomass, soil’s plant-available
nutrients, coffee yield, and profit). The likelihood ratio test indicated that 88.53% of the
variations in the response variables were attributed to the variations in treatment and
time (season). The variables treatment and season fulfilled the key assumptions of the
linear regression model. They were independent with no collinearity between them. Their
residuals were fairly normal and homoscedastic. After confirming that there were no
significant differences between the experiments, we dropped the experiment variable and
continued with treatment and season as dependent variables in the linear regression models
and the post hoc analysis with Tukey’s test to compare the averages between treatments
and seasons for the different response variables. We produced cross-tabulations of the
means of the different response variables to compare the treatment effect in each season. A
Kruskal Wallis rank-sum test was done to determine the significance of the differences in
the percentage change of the soil plant-available nutrients by treatment. This was followed
by a pairwise comparison between treatments using the Wilcoxon rank sum exact test.

3. Results
3.1. Above-Ground Biomass

The mean biomass produced per season by T1, T2, T3, and T4 was 3.68, 2.09, 4.35, and
1.59 mt/ha, respectively (Figure 4). The biomass of T3 was significantly higher than all
other treatments (Table 2). Generally, the biomass produced increased with the season from
2.57 mt/ha in SR1 to 3.13 mt/ha in LR2.

After two consecutive growing seasons, dry biomass in T1 started declining while that
under T2 and T3 was increasing with subsequent seasons (Table 3).

3.2. Soil Macronutrients

Table 4 shows that the change in N and K was positive for T1, T2, and T3 but was
negative for T4. The change in P was negative for all treatments. The changes in available
nutrients were significantly different (p < 0.01).

3.3. Coffee Yield

The mean coffee yield produced per season under T1, T2, T3, and T4 were 1.01, 0.69,
1.10, and 0.40 mt/ha, respectively. For the season, the mean coffee yield was increasing with
the season from 0.36 mt/ha in season one to 1.31 mt/ha in season four. There was a positive
correlation between biomass and coffee yield. The results show that these two have a
significant, positive correlation (ρ = 0.567, p < 0.001). By the fourth growing season (LR2),
coffee yield was significantly higher under T3 than in all the other treatments (Table 5).
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Table 2. Post hoc analysis of mean biomass (mt/ha) by treatment.

Treatment Mean Difference in Biomass Std. Error t Value Pr (>|t|)

T2-T1 −1.59 0.06 −27.53 0.00
T3-T1 0.67 0.06 11.57 0.00
T4-T1 −2.09 0.06 −36.22 0.00
T3-T2 2.26 0.06 39.10 0.00
T4-T2 −0.50 0.06 −8.69 0.00
T4-T3 −2.76 0.06 −47.79 0.00

Table 3. Cross tabulation of biomass (mt/ha) treatment and season effect.

Treatment SR1 LR1 SR2 LR2

T1 3.57 (0.05) b 4.06 (0.05) b 3.78 (0.05) b 3.32 (0.10) b

T2 1.41 (0.03) c 1.62 (0.03) c 2.46 (0.07) c 2.88 (0.13) c

T3 3.88 (0.05) a 4.53 (0.04) a 4.41 (0.06) a 4.58 (0.05) a

T4 1.43 (0.04) c 1.60 (0.03) c 1.59 (0.04) d 1.74 (0.03) d

Figures followed by different superscripts are significantly different at p < 0.05 (otherwise non-significant).
Comparisons are done column-wise using Tukey’s post hoc analysis of the regression model biomass by treatment
and season. Figures in the brackets are the standard error of the mean.

Table 4. Change in soil’s plant-available nutrients between 2018 and 2020.

Treatment
% Change in Available Soil-Plant Nutrients

N P K

T1 82.76 −7.41 26.33
T2 58.53 −4.57 16.57
T3 69.92 −3.05 30.64
T4 −0.35 −52.87 −2.90

The pairwise comparison test showed that T4 had a significant change (p = 0.016) compared to T1, T2, and T3. The
N, P, and K pairwise comparison tests showed significant differences in all treatment pairs (p < 0.05).
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Table 5. Cross tabulation of coffee yield (mt/ha) with treatment and season.

Treatment SR1 LR1 SR2 LR2

T1 0.47 (0.03) a 0.96 (0.04) a 1.07 (0.07) a 1.54 (0.09) b

T2 0.34 (0.02) b c 0.53 (0.03) b 0.67 (0.05) b 1.22 (0.06) c

T3 0.39 (0.04) a b 0.95 (0.04) a 1.16 (0.07) a 1.91 (0.08) a

T4 0.24 (0.02) c 0.37 (0.03) c 0.43 (0.05) c 0.57 (0.03) d

Figures followed by different superscripts are significantly different at p < 0.05 (otherwise non-significant).
Comparisons are done column-wise using Tukey’s post hoc analysis of the regression model coffee yield by
treatment and season. Figures in brackets are the standard error of the mean.

3.4. Profitability

A high positive correlation between biomass and profit was observed (ρ = 0.87,
p < 0.001).

In all seasons combined, the highest profit was attained in T1 (USD 511.57) and it was
significantly higher than in all other treatments (Table 6). The mean profit per season for
T2, T3, and T4 was USD 89.64, USD 363.37, and USD −104.58 respectively.

Table 6. Post hoc analysis of the profit mean by treatment.

Table Mean Difference in Profit Std. Error t Value Pr (>|t|)

T2-T1 −421.93 47.56 −8.87 0.00
T3-T1 −148.20 47.56 −3.12 0.01
T4-T1 −616.16 47.56 −12.96 0.00
T3-T2 273.73 47.56 5.76 0.00
T4-T2 −194.23 47.56 −4.08 0.00
T4-T3 −467.95 47.56 −9.84 0.00

The profits were increasing with the season from USD −668.2/ha during SR1 to USD
812/ha during LR1 in T3.

In the first season (SR1) gross profit in all treatments was negative and by the fourth
growing season (LR2) T3 had significantly higher positive profit than all other treatments
(Table 7).

Table 7. Cross-tabulation of gross profit for the different treatments and seasons.

Treatment SR1 LR1 SR2 LR2

Gross Profit ($ ha−1)

T1 −206.7 (21.78) a 504.9 (30.15) a 700.6 (48.82) a 1047.5 (63.86) b

T2 −1012.9 (17.48) c 278.2 (25.45) b 332.8 (40.28) b 760.5 (47.51) c

T3 −1122.3 (29.71) d 475.1 (30.99) a 764.4 (52.04) a 1336.3 (60.37) a

T4 −331.0 (19.99) b −188.0 (24.60) c −3.1 (33.15) c 103.8 (23.01) d

Figures followed by different superscripts are significantly different at p < 0.05 (otherwise non-significant).
Comparisons are done columnwise using Tukey’s post hoc analysis of the regression model profit by treatment
and season. Figures in brackets are the standard error of the mean.

4. Discussion
4.1. Above-Ground Biomass

Sufficient above-ground biomass (up to 8.7 mt/ha/yr) for cover under C. arabica
was produced by T3 as compared to the control where only 3.2 mt/ha/yr was generated.
This result agrees with findings on biomass generation by M. pruriens under different
soil, agroecological, and cropping system conditions [46–50]. Similarly, related studies
indicate that M. dura has a high stem density [66] and can produce above-ground biomass
of 8.2–17 mt/ha [89]. Therefore, the results of this experiment agree with the documented
evidence that above-ground biomass cover increases via the integration of legumes [45,46].

The decline in above-ground biomass of T1 during SR2 and LR2 confirms findings
from other studies where successive planting and cutting of M. pruriens produced declining
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above-ground biomass [47,53]. This decline could have been induced by a viral infection
whose signs were observed during LR2. A similar viral infection associated with the
continuous planting of M. pruriens has been reported by Zaim et al. [90]. This indicates
that M. pruriens alone may not be a sustainable source of above-ground cover but requires
interplanting it with a perennial legume. T2 produced significantly higher above-ground
dry biomass cover than T4 starting with SR2, indicating that an initial phase with a lower
impact of M. dura during subsequent growing seasons can be anticipated as is expected of
agroforestry systems [89]. Results of this four-season experiment indicate that a combina-
tion of M. pruriens with M. dura can sustainably fulfil the 0.5–2 mt/ha annual above-ground
biomass cover recommended for tropical areas by Bekeko [36], since T3 produced more
than the required minimum amounts of biomass and was increasing with the season.

4.2. Available Soil Macronutrients

After the four growing seasons of integrating the treatments, plant-available N and K
increased under T1, T2, and T3 compared to T4. This could be explained by the addition of
nitrogen via the leguminous M. pruriens and M. dura. This finding is consistent with the
nitrogen-fixing potential of M. pruriens reported by Kaizzi et al. [49], Hauser and Nolte [51],
Vasconcelos et al. [42], and Ahmed et al. [47]. This finding also agrees with other studies
that found that M. pruriens improves the activity of soil biota both for the macro and
microorganisms which facilitate processes that accumulate soil nutrients including N, P,
and K [91] while also suppressing weeds that would otherwise reduce the soil nutrient
stocks [35]. The findings also support other related studies which show that legumes,
including trees integrated under coffee increase the availability of soil nutrients [39,44].

The reduction in plant-available P under T1, T2, and T3 could have been due to its
increased uptake by the coffee trees induced by the increase in nitrogen, which led to a
higher demand for P in the production of more coffee cherries. Available P was lower
under T4 than in T1, T2, and T3 probably due to the high loss of P that is known to occur
due to erosion rather than leaching [92,93]. In T1, T2, and T3 the cover legumes could
have protected the soil against erosion hence less loss of P as has been documented in
studies on cover legumes [39,55,56]. The plant-available K increased in T1, T2, and T3
probably as a result of the mineralization of the plant residues during their decomposition.
Additionally, the increase in K could be attributed to its uptake from deeper soil layers
which is then transferred to the surface through the deposition of the leaves of M. pruriens
and M. dura. This finding agrees with several studies on the contribution of crop residues
to the availability of K in the soil [94]. Results from this study indicate that a combination of
M. pruriens with M. dura integrated under C. arabica on sloping land increases the availability
of macronutrients that are essential for coffee production.

4.3. Coffee Yield

The observed increase in coffee yield under T3 and T1 can be attributed to the high
biomass with its several positive impacts that are known about legume cover such as,
increasing the availability of soil nutrients, reducing the disturbance of coffee feeder roots,
and reduction of soil erosion. This finding agrees with the known positive impact of
legume cover on crop yield [39,51–53]. Additionally, an increase in plant-available soil
K is known for contributing to the coffee cherry formation, increasing the weight and
volume of coffee as well as activating its maturation [95]. This can explain the increase in
coffee yield under T1, T2, and T3 where plant-available K increased. The increase in coffee
yield can also be explained by the mineralization of the biomass in T1, T2, and T3 which
consequently optimized the uptake of soil nutrients by the coffee trees [43,47,49,50,96]. A
positive correlation between biomass and coffee yield has been found where in a similar
study, above-ground biomass increased coffee yield by improving the fruit-bearing nodes
of coffee trees [79]. This confirms the positive correlation between biomass and coffee
yield that was observed. Thus, the findings on biomass accumulation and increase in the
availability of soil nutrients are consistent with the observed increase in coffee yield under
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T1 and T3 and agree with other studies which indicate that cover legumes contribute to
sustained yield increase [41,43,48]. The overall increase in coffee yield in all treatments
during LR2 could, besides the impact of the treatments, be attributed to the high rainfall
that was received in that season (Figure 2) and not necessarily attributed to the impact
of T4. The low coffee yield under T2 compared to T1 could be due to the uptake of soil
nutrients by the young M. dura trees which competed with the coffee for soil nutrients. The
soil’s plant-available N, P, and K remained low under T4 compared to other treatments.
Thus, the low coffee yield in T4 was also commensurate with the low soil nutrients.

The lower coffee yield observed under T4 compared to other treatments could also be
due to the continuous hand hoeing: a traditional weed control method under the coffee
trees. This is known to be destructive to the coffee because the C. arabica feeder roots feed
within 20 cm soil depth [97–99]. The impact of such disturbance by continuous hoeing has
also been reported by Sarmiento-Soler et al. [100] and Iijima et al. [101]. On the other hand,
hoeing was only required two times under T3. This could have reduced the destruction
of the surface feeder roots, hence the immediate high yields of coffee since coffee is a
highly responsive plant [39,47,53,96]. This further corroborates findings on the potential of
legumes in reducing tillage rate [31,39,47,52]. The slow impact on the coffee yield that was
observed in T2 confirms the finding that the benefits of agroforestry systems take a long
time to manifest [100].

4.4. Profitability

The observed positive correlation between biomass and profit indicates that the real-
ized profits can be attributed to the different treatments which contributed the different
amounts of biomass. T1 had a significantly high profit overall because of the low costs
associated with integrating M. pruriens and the resulting increase in the yield of coffee.
During the first growing season (SR1) labor costs for T3 associated with M. dura establish-
ment were 18% and 15% higher than the costs for T1 and T4, respectively. However, after
their establishment, and particularly when the M. dura trees had been established (LR2), T3
became more profitable than all other treatments.

Gross profit in T4 continued to be negative due to the high costs required for contin-
uous hoeing as a traditional weed control method while this cost was avoided under T3
since the biomass cover in this treatment smothered the weeds [42,47,48,53]. Under T4, the
C. arabica was also likely experiencing competition from the weeds, and destruction of the
roots of C. arabica due to continuous weeding, hence there were low yields with subsequent
negative gross profit. These findings confirm that covering with legumes is profitable as
opposed to no-cover [8,9,48]. Although, until the fourth growing season the profit in T2
was significantly lower than in T1, its tested impact was preliminary since the M. dura trees
were not fully mature. Thus, a further increase in annual biomass production and nitrogen
fixation rate can be expected in the future to impact soil fertility positively under T2 and T3
resulting in higher coffee yield with a subsequent increase in profits as reported in related
studies [41,43,48].

5. Conclusions

A combination of the annual legume M. pruriens with the perennial legume M. dura
under C. arabica on sloping land sustainably increases above-ground biomass cover, avail-
ability of the soil’s plant-macronutrients (N and K) which subsequently increases cof-
fee yield and profitability. Therefore, it is recommended to integrate a combination of
M. pruriens with M. dura under C. arabica on sloping land.

This study was based on four cropping seasons, extended studies on implementing
a self-sowing system of M. pruriens under M. dura and C. arabica to further increase prof-
itability, and a study on understanding the long-term impact of this cropping system on
the microclimate and soil erosion are recommended.
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