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Abstract. Two structures A and B are n-equivalent if player II has a winning

strategy in the n-move Ehrenfeucht-Fräıssé game on A and B. Ordinals and
m-coloured ordinals are studied up to n-equivalence for various values of m

and n.

1. Introduction

Let A and B be coloured linear orders. We say that A is n-equivalent to B,
written A ≡n B, if player II has a winning strategy in the n-move Ehrenfeucht-
Fräıssé game on A and B. In [4] we established bounds on the least representatives
of the n-equivalence classes of coloured linear orders in the special cases in which
the ordering is finite, or the number of moves is at most 2. Here our focus is on the
case of ordinals, with or without colours.

We briefly recall the material from [4] on coloured orderings and games that we
need. A coloured linear ordering is a triple (A,<, F ) where (A,<) is a linear order
and F is a mapping from A onto a set C which we think of as a set of colours.
We just write A instead of (A,<, F ) provided that the ordering and colouring are
clear. In the n-move Ehrenfeucht-Fräıssé game on coloured linear orders A and B
(or indeed any relational structures) players I and II play alternately, I moving first.
On each move I picks an element of either structure (his choice does not have to be
from the same structure on every move), and II responds by choosing an element
of the other structure. After n moves, I and II between them have chosen elements
x1, x2, . . . , xn of A, and y1, y2, . . . , yn of B, and player II wins if the map taking xi
to yi for each i is an isomorphism (that is, it preserves the ordering and colour), and
player I wins otherwise. Intuitively, I is trying to demonstrate that there is some
difference between the structures, while player II is trying to show that they are at
least reasonably similar. We say that A and B are n-equivalent and write A ≡n B,
if II has a winning strategy. It is easy to see that ≡n is an equivalence relation, and
it is standard that for any n, there are only finitely many n-equivalence classes, so
it is natural to enquire what their optimal representatives may be. The problem for
general orderings seems to be quite hard, but with special conditions on the type
of ordering or colouring, or the number of moves, some results can be obtained. If
the ordering is an ordinal, then the notion of ‘optimality’ makes sense: a (coloured)
ordinal is optimal if it is of least length in its n-equivalence class. This may still
not be unique in the coloured case. If the ordering is finite, then we may take the
lexicographically least; in the general case we would hope to make some canonical
choice, for instance, exhibiting some eventual periodicity.

Already in [5], some information about the optimal representatives of n-equivalence
classes of (monochromatic) ordinals is given (also see [1]). Rosenstein remarks (as
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an exercise) that every ordinal is 2n-equivalent to some ordinal in the finite set

{ωn · an + ωn−1 · an−1 + . . .+ ω · a1 + a0 : ai < 22n, an ≤ 1}.
In section 2 we sharpen this result to give precise lists of all the optimal values for
n-equivalence classes of ordinals, including the case where n is odd.

In section 3 we move on to consider the coloured case. By [4], we already
understand the situation for 2 moves, and we now generalize this to more moves.
Here we concentrate on giving some upper bounds for the optimal representatives,
which certainly seem unnecessarily large, but at least all lie below the ordinal ωω.

Next we recall the notion of ‘character’ from [4], and the main result about
characters. Assume that we have found representatives for the n-equivalence classes
of certain m-coloured linearly ordered sets. We write the representative for A as
[A]n. In a coloured linear order A, the n-character of a ∈ A having colour c is the
ordered pair 〈[A<a]n, [A

>a]n〉 (where A<a = {x ∈ A : x < a} and A>a = {x ∈
A : x > a}). We let ρcn(A) = {〈[A<a]n, [A

>a]n〉 : a ∈ A is c-coloured}, and if
we wish to include the colour as part of the n-character of a, we may also write
〈[A<a]n, [A

>a]n〉c.

Theorem 1.1 ([4]). A ≡n+1 B if and only if ρcn(A) = ρcn(B) for all c ∈ C.

If A and B are coloured linear orders, then A+B stands for the concatenation
of A and B, that is, we first assume (by replacing by copies if necessary) that A
and B are disjoint, and we place all members of A to the left of all members of B.
As a generalization of this, we may write

∑
{Ai : i ∈ I} for the concatenation of a

family of (coloured) linear orders {Ai : i ∈ I} indexed by a linear ordering I. When
forming concatenations we would normally assume that all the orderings have the
same colour set. We write A ·B for the anti-lexicographic product, B ‘copies of’ A,
to accord with the customary use for ordinals (and unlike [4], where lexicographic
products are used). Note that here B is assumed monochromatic, and colours are
assigned to members of A ·B by means of the A-co-ordinate. The following result
will be used without explicit reference.

Theorem 1.2. (i) If A ≡n B, then X+A+Y ≡n X+B+Y and X ·A·Y ≡n X ·B·Y .
(ii) If Ai ≡n Bi for each i ∈ I, then

∑
{Ai : i ∈ I} ≡n

∑
{Bi : i ∈ I}.

We conclude the introduction by quoting the following results which will be used
throughout.

Lemma 1.3. Let A and B be finite linear orderings. Then A ≡n B if and only if
(|A| = |B| < 2n − 1) or (|A|, |B| ≥ 2n − 1).

This is well known, but may be easily proved using characters.

Theorem 1.4 (Mostowski-Tarski). For any n > 0 and ordinal β > 0,

(i) ωn ≡2n ω
n · β,

(ii) ωn 6≡2n+1 ω
n + β,

(iii) ωn 6≡2n+1 ω
n · β, for β > 1.

See [5] for a proof. Note that (iii) shows that (i) is the best possible for player
II (and (iii) is an immediate consequence of (ii)).

2. Optimal representatives for ordinals

We begin by remarking on the situation for n = 1 and 2, which was treated in
[4]. For n = 1, all non-empty linear orders are n-equivalent. We therefore have two
classes which can be represented by linear orders 0 and 1. For n = 2, it follows
from Lemma 3.2 in [4] that a complete family of representatives is given by 0, 1,



FINITELY COLOURED ORDINALS 3

2, 3 and ω (and any infinite ordinal is 2-equivalent to ω if it is a limit ordinal,
and to 3 if it is a successor). The case n = 0 is degenerate, but still fits into the
overall pattern; since there are no moves, all structures are equivalent, so there is
one minimal representative, namely 0.

Many of our proofs will be by induction, which means that we shall concentrate
on describing the first moves of the two players, and then appeal to the induction
hypothesis. We usually write A and B for the two structures (or α and β), and
x1 and y1 for the first elements chosen from A, B respectively. Subsequent moves
played in A are x2, . . . , xn and in B are y2, . . . , yn. Thus on each move, one of
player I and player II plays xi, and the other plays yi, but which one plays which
may vary during the game.

First we give the following two lemmas which throughout the paper will reduce
the number of cases to be considered.

Lemma 2.1. If A = ωi · γ0 and B = γ1 + ωj where j < i ≤ n
2 , then A 6≡n B.

Proof. Player I chooses y1 = γ1 ∈ B so that B>y1 ∼= ωj (or B>y1 = ∅ if j = 0).
Whatever x1 ∈ A player II plays, A>x1 ∼= ωi · γ2 for some γ2 > 0. If j = 0,
A>x1 6≡n−1 B

>y1 is immediate. Otherwise, by Theorem 1.4(iii), ωj 6≡2j+1 ω
i · γ2,

and since 2j + 1 ≤ n− 1, I can therefore win in the remaining n− 1 moves.

Lemma 2.2. Let A = ωi · ai + ωi−1 · ai−1 + . . .+ ω · a1 + a0 and B =
ωi · bi + ωi−1 · bi−1 + . . . + ω · b1 + b0. Then in any play of the n-move game on
A and B in which player I starts by playing x1 = ωj · γ0 for some ordinal γ0 > 0
where j < n

2 , unless player II plays y1 = ωj · γ1 for some γ1 > 0 then I can win the
game in the remaining n− 1 moves.

Proof. Supposing on the contrary that B<y1 has a final segment of order-type ωr

for some r < j (possibly 0), we may write A<x1 ∼= ωj · γ0, B<y1 ∼= γ1 + ωr, where
r < j ≤ n−1

2 , and so by Lemma 2.1, A<x1 6≡n−1 B
<y1 , and player I wins.

Lemma 2.3. Let n,m, i, k be integers such that 0 < i ≤ n
2 .

(i) If k ≥ m = 2n−2i then ωi · k ≡n ωi ·m.
(ii) If k > m and m < 2n−2i then ωi · k 6≡n ωi ·m.

Proof. (i) We use induction on n. Since 0 < i ≤ n
2 , n ≥ 2. If n = 2, then i = 1 and

m = 1. Now ω · 1 ≡2 ω · k for any k ≥ 1, giving the result.
So we assume the result for n ≥ 2, and prove it for n+ 1. Let 0 < i ≤ n+1

2 , and

k ≥ m = 2n+1−2i, with the object of showing that ωi · k ≡n+1 ω
i ·m. If i = n+1

2 ,

then n is odd, so by Theorem 1.4(i), ω
n+1
2 · k ≡n+1 ω

n+1
2 ≡n+1 ω

n+1
2 ·m. So from

now on we assume that 0 < i < n+1
2 .

Let A = ωi · k and B = ωi ·m. On his first move, player II may play so that if
A<x1 has the form ωi · q0 +γ where γ < ωi and 0 ≤ q0 < 2n−2i, then A<x1 ∼= B<y1 .
(In other words, if x1 is I’s move, which satisfies this condition, then II can choose
a corresponding y1, and if y1 is I’s move, which satisfies this condition, then II
can choose a corresponding x1.) It follows that A<x1 ≡n B<y1 , and in this case,
A>x1 and B>y1 have the forms ωi · q1 and ωi · q2 respectively, where q1, q2 ≥ 2n−2i.
By induction hypothesis, A>x1 ≡n B>y1 , so II can win the (n + 1)-move game by
calling on his strategies on the left and right of x1, y1 as required in the remaining
n moves.

In a similar way, player II may play on his first move so that if A>x1 has the form
ωi · r0 where 1 ≤ r0 ≤ 2n−2i, then A>x1 ∼= B>y1 . Here A>x1 ≡n B>y1 , and in this
case, II may also ensure that A<x1 and B<y1 have the form ωi ·r1 +γ and ωi ·r2 +γ
respectively, where r1, r2 ≥ 2n−2i and therefore by the induction hypothesis, it
follows that A<x1 ≡n B<y1 . Once more this provides II with a winning strategy in
the (n+ 1)-move game.
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Finally, player II may play on his first move so that if A<x1 has the form ωi ·s0+γ
where 2n−2i ≤ s0 < k− 2n−2i and γ < ωi, then B<y1 ∼= ωi · 2n−2i + γ. Again using
the induction hypothesis, A<x1 ≡n B<y1 . In this case A>x1 and B>y1 have the
form ωi · s1 where s1 ≥ 2n−2i, and ωi · 2n−2i. By the induction hypothesis, we
deduce that A>x1 ≡n B>y1 , and again II wins.

(ii) Again using induction, for the basis case, n = 2, in which case i = 1 and
m = 0 so the result is immediate.

Now assume the result for n, and let 0 < i ≤ n+1
2 , k > m, and m < 2n+1−2i.

Since the result is immediate for m = 0, we assume that m 6= 0 which means that
i < n+1

2 , so i ≤ n
2 . Let r be the integer part [k2 ] of k

2 , and on his first move, I

plays x1 = ωi · r. Then A<x1 ∼= ωi · r and A>x1 ∼= ωi(k− r). Suppose that II plays
y1. By Lemma 2.2 we may suppose that y1 = ωi · s for some s. Player I can now
win in the remaining n moves on the left or right, provided that A<x1 6≡n B<y1 or
A>x1 6≡n B>y1 . As remarked above, 0 < i ≤ n

2 .

If s < r and s < 2n−2i then by induction hypothesis, A<x1 6≡n B<y1 . If however,
s < r and s ≥ 2n−2i, then r > 2n−2i which implies that k > 2n+1−2i, and hence that
k−r ≥ 2n−2i > m−s. Therefore A>x1 6≡n B>y1 , again by the induction hypothesis.
Otherwise s ≥ r, which implies that m−s < k−r. Now m−s ≥ 2n−2i is impossible,
since it implies that k − r > 2n−2i so also r ≥ 2n−2i, giving s,m − s ≥ 2n−2i and
m ≥ 2n+1−2i, contrary to supposition. The conclusion is that m−s < 2n−2i, which
again gives A>x1 6≡n B>y1 .

We write t for the integer part [n2 ] of n
2 .

Corollary 2.4. If n > 0 then every ordinal is n-equivalent to some ordinal in the
finite set Ωn = {ωt · at + ωt−1 · at−1 + . . .+ ω · a1 + a0 : ai ≤ 2n−2i}.

Proof. First suppose that n is even. Using Cantor normal form we may write any
ordinal α in the form α = ωt · α∗ + ωt−1 · bt−1 + . . . + ω · b1 + b0 where α∗ is an
ordinal, and bi ∈ ω. By Theorem 1.4(i), ωt · α∗ ≡n ωt if α∗ 6= 0, and by Lemma
2.3(i), ωi · bi ≡n ωi · ai where ai = min(bi, 2

n−2i). Finally letting at = min(α∗, 1),
we find that α ≡n ωt · at + ωt−1 · at−1 + . . .+ ω · a1 + a0 ∈ Ωn.

The proof for odd n is similar except that we let at = min(α∗, 2). Note that we
cannot appeal to Theorem 1.4(i) directly this time to show that ωt ·α∗ ≡n ωt ·2 for
α∗ ≥ 2, and instead follow a direct proof. Player II may play so that x1 = ωt ·q1 +γ,
y1 = ωt · q2 + γ, where q1 < α∗, q2 = 0 or 1 and q1 = 0 ⇔ q2 = 0. The facts that
A<x1 ≡n−1 B

<y1 and A>x1 ≡n−1 B
>y1 follow from Theorem 1.4(i).

Corollary 2.5. (i) If n is even, then any ordinal is n-equivalent to some ordinal
≤ ω n

2 · 2,

(ii) If n is odd, then any ordinal is n-equivalent to some ordinal ≤ ω n−1
2 · 3.

We now give a list, without proof, of the minimal n-equivalence class represen-
tatives for n = 3 and 4. Proofs that these are the correct lists are given in [3], and
they form the basis for the general result we prove in Theorem 2.13, which yields
these two lists as special cases.

The minimal 3-equivalence class representatives for all ordinals are
0, 1, 2, 3, 4, 5, 6, 7,
ω, ω + 1, ω + 2, ω + 3, ω + 4,
ω · 2, ω · 2 + 1, ω · 2 + 2, ω · 2 + 3.

The minimal 4-equivalence class representatives for all ordinals are
0, 1, 2, . . . , 15,
ω, ω + 1, ω + 2, ω + 3, ω + 4, . . . , ω + 12,
ω · 2, ω · 2 + 1, ω · 2 + 2, ω · 2 + 3, . . . , ω · 2 + 12,
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ω · 3, ω · 3 + 1, ω · 3 + 2, . . . , ω · 3 + 12,
ω · 4, ω · 4 + 1, ω · 4 + 2, ω · 4 + 3,
ω2, ω2 + 1, ω2 + 2, ω2 + 3.

Rosenstein’s list of 2n-equivalence class representatives that we quoted in the
introduction includes some redundancies, and indeed we have already illustrated
this in Corollary 2.4. We shall show that even this list can be improved, and give
explicit lists of representatives of ordinals up to n-equivalence by making use of
the patterns seen in generating the two lists just given. Thus if Ωn is the set of n-
equivalence class representatives provided by Corollary 2.4, we shall find Ω′n ⊆ Ωn
that contains no redundant elements.

The following result generalizes an exercise in [5] page 106.

Lemma 2.6. For all even n ≥ 4 and ordinals α ≥ 3,

(i) ω
n
2−1(α+ 1) ≡n ω

n
2−1 · 4,

(ii) ω
n
2 + ω

n
2−1 6≡n ω

n
2−1 · 3.

Proof. (i) We describe a winning strategy for player II. Let us write A = ω
n
2−1(α+1)

and B = ω
n
2−1 · 4. Player II may move on his first move so that if x1 is in the 0, 1

or last copy of ω
n
2−1 in A, then y1 is in the corresponding copy of B, and if x1 is in

any other copy of ω
n
2−1 in A, then y1 is in the third copy (numbered by 2) of ω

n
2−1

in B. Furthermore, player II may play so that x1 and y1 are the corresponding
points in those copies.

The outcomes in these four cases are as follows:
A<x1 ∼= B<y1 and A>x1 ∼= ω

n
2−1(α+ 1), B>y1 ∼= ω

n
2−1 · 4,

A<x1 ∼= B<y1 and A>x1 ∼= ω
n
2−1(α1 + 1), B>y1 ∼= ω

n
2−1 · 3, where α = 1 + α1,

A<x1 ∼= ω
n
2−1 · α+ γ, B<y1 ∼= ω

n
2−1 · 3 + γ and A>x1 ∼= B>y1 ,

A<x1 ∼= ω
n
2−1 · α1 + γ, B<y1 ∼= ω

n
2−1 · 2 + γ, for some γ < ω

n
2−1, A>x1 ∼=

ω
n
2−1(α2 + 1), B>y1 ∼= ω

n
2−1 · 2, where α1 + α2 = α, 2 ≤ α1 < α.

In each case Player II has a winning strategy in the remaining n − 1 moves,
whether player I plays on the left or right of the first moves. When the relevant
structures are isomorphic this is immediate. Otherwise, player II may play so that
x2 and y2 are corresponding points of some copies of ω

n
2−1 (or of a ‘γ’ part), and

if one of the copies is the first one, then so is the other; for the remaining n − 2
moves, player II uses Theorem 1.4(i) to win.

(ii) Let A = ω
n
2 + ω

n
2−1 and B = ω

n
2−1 · 3. On his first move, player I plays

the first point x1 of copy number 3 of ω
n
2−1 in A, and II responds by playing the

first point y1 of the ith copy of ω
n
2−1 in B, 0 < i < 3 (if he chooses 0 or a non-first

point, then he loses by Lemma 2.2). If i = 1 then from now on I plays on the
left of x1, y1, or if i = 2 he plays on the right of x1, y1, in each case winning using
Theorem 1.4(iii).

Lemma 2.7. Let m ≥ 4, 0 < i ≤ n−1
2 , and k be an ordinal.

(i) If k ≥ 2n−2i, then ωi · k + ωi−1 ·m ≡n ωi(2n−2i − 1) + ωi−1 ·m,
(ii) If l < 2n−2i and l < k, then ωi · k + ωi−1 · 3 6≡n ωi · l + ωi−1 · 3.

Proof. (i) We use induction. Notice that as n−1
2 ≥ 1, we have n ≥ 3. If n = 3, then

i = 1, so we have to check that ω·k+m ≡3 ω+m for k ≥ 2. We find that ω·k+m and
ω +m both have character set {〈0, 3〉, 〈1, 3〉, 〈2, 3〉, 〈3, 3〉, 〈ω, 3〉, 〈3, 2〉, 〈3, 1〉, 〈3, 0〉},
and so they are 3-equivalent.

Now assume the result holds for n ≥ 3 and we prove it for n+ 1. So we consider
A = ωi · k + ωi−1 ·m and B = ωi(2n+1−2i − 1) + ωi−1 ·m where 0 < i ≤ n

2 , and

k ≥ 2n+1−2i, and we have to show that player II has a winning strategy in the
(n + 1)-move game. First note that II can play in such a way that x1 lies in the
final ωi−1 ·m segment of A if and only if y1 lies in the final ωi−1 ·m segment of B
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and then they are corresponding points. By Lemma 2.3(i), ωi · k ≡n ωi · 2n−2i ≡n
ωi(2n+1−2i−1), and this provides a winning strategy for player II in the remaining
n moves, since this shows that A<x1 ≡n B<y1 (and A>x1 ≡n B>y1 because they
are isomorphic).

Now supposing that x1 and y1 do not lie in the final part, the first case is where
i = n

2 . Then n is even, and A = ω
n
2 · k + ω

n
2−1 ·m, B = ω

n
2 + ω

n
2−1 ·m. Player II

can play so that one of the following holds:
x1 = y1 < ω

n
2 , in which case A<x1 ∼= B<y1 so A<x1 ≡n B<y1 , and A>x1 ∼=

ω
n
2 · k + ω

n
2−1 · m, B>y1 ∼= ω

n
2 + ω

n
2−1 · m, which are n-equivalent by Theorem

1.4(i).
x1 = ω

n
2 · q1 + γ and y1 = ω

n
2 + γ where 1 ≤ q1 < k and γ < ω

n
2−1. Then

A<x1 ∼= ω
n
2 · q1 + γ and B<y1 ∼= ω

n
2 + γ so A<x1 ≡n B<y1 by Theorem 1.4(i) and

A>x1 ∼= ω
n
2 (k−q1)+ω

n
2−1 ·m (where if k is infinite, k−q1 = k) and B>y1 ∼= ω

n
2−1 ·m

so A>x1 ≡n B>y1 by Lemmas 2.6(i) and 2.3(i).
x1 = ω

n
2 · q1 +ω

n
2−1 · q2 +γ and y1 = ω

n
2−1 · 4 +γ where 1 ≤ q1 < k, 1 ≤ q2 < ω,

and γ < ω
n
2−1. Then A<x1 ∼= ω

n
2 · q1 + ω

n
2−1 · q2 + γ and B<y1 ∼= ω

n
2−1 · 4 + γ so

A<x1 ≡n B<y1 by Lemmas 2.6(i) and 2.3(i), and A>x1 ∼= ω
n
2 (k − q1) + ω

n
2−1 ·m

and B>y1 ∼= ω
n
2 + ω

n
2−1 ·m so A>x1 ≡n B>y1 by Theorem 1.4(i).

Otherwise, 0 < i < n
2 and hence 0 < i ≤ n−1

2 , so by induction hypothesis,

ωi · 2n−2i + ωi−1 · m ≡n ωi(2n−2i − 1) + ωi−1 · m. Player II can play so that if
x1 < ωi(2n−2i+ 1) then x1 = y1, and if ωi(2n−2i+ 1) ≤ x1 < ωi ·k then for some γ,
and finite r1, r2 ≥ 2n−2i, A<x1 ∼= ωi · r1 + γ, B<y1 ∼= ωi · r2 + γ, and A>x1 ∼= B>y1 .

In the first case, A>x1 ∼= ωi · r3 + ωi−1 · m and B>y1 ∼= ωi · r4 + ωi−1 · m
where r3 ≥ 2n−2i and r4 ≥ 2n−2i − 1, so A<x1 = B<y1 giving A<x1 ≡n B<y1 and
A>x1 ≡n B>y1 by induction hypothesis, which provides a winning strategy for II
in the (n+ 1)-move game. In the second case, A<x1 ≡n B<y1 by Lemma 2.3(i) and
A>x1 ∼= B>y1 , so II again wins.

In all cases we deduce that A ≡n+1 B.
(ii) We use induction. As above, n ≥ 3. If n = 3 then i = 1, and so we have to

show that ω · l+ 3 6≡3 ω · k+ 3 for l ≤ 1 and k > l. This is verified by consideration
of 2-characters. If l = 1 then k ≥ 2, so ω · k + 3 has 〈ω, 3〉 as a 2-character, but
ω · l + 3 does not. If l = 0 then ω · k + 3 has 〈ω, 2〉 as a 2-character, but ω · l + 3
does not.

For the induction step we assume the result for n ≥ 3 and show that I has a
winning strategy in the (n+ 1)-move game on A = ωi · k+ωi−1 · 3 and B = ωi · l+
ωi−1 · 3 where 0 < i ≤ n

2 , l < 2n+1−2i, and l < k. In the first case, i = n
2 , so that n

is even, and we have to show that A = ω
n
2 ·k+ω

n
2−1 · 3 6≡n+1 B = ω

n
2 · l+ω

n
2−1 · 3

where l = 1 or 0, and k > l. Let I play x1 = ω
n
2 ∈ A on his first move. By Lemma

2.2, noting that n
2 <

n+1
2 , we may suppose that II’s reply y1 is a non-zero multiple

of ω
n
2 . Since l ≤ 1, this implies that l = 1 (and so k ≥ 2) and y1 = ω

n
2 ∈ B, and

I now plays x2 = ω
n
2 · 2 ∈ A. By Lemma 2.2 again, II plays y2 = ω

n
2 + ω

n
2−1 or

ω
n
2 +ω

n
2−1 · 2 in B. If y2 = ω

n
2 +ω

n
2−1, player I wins on the intervals (x1, x2) and

(y1, y2) using ω
n
2−1 6≡n−1 ω

n
2 and if y2 = ω

n
2 + ω

n
2−1 · 2, he wins to the right of x2

and y2 using ω
n
2 (k− 2) + ω

n
2−1 · 3 6≡n−1 ω

n
2−1, in each case appealing to Theorem

1.4(iii).
Now we suppose that i < n

2 , and let q1 = min(2n−2i, [k2 ]). Player I plays x1 =

ωi ·q1 ∈ A, and by again appealing to Lemma 2.2, we may assume that II’s response
is of the form y1 = ωi · q2 for some q2 with 1 ≤ q2 ≤ l. Then A<x1 = ωi · q1,
B<y1 = ωi · q2, A>x1 ∼= ωi(k − q1) + ωi−1 · 3, and B>y1 ∼= ωi(l − q2) + ωi−1 · 3. If
q2 < q1 then by Lemma 2.3(ii), ωi · q1 6≡n ωi · q2, so player I can win by playing
on the left of x1 and y1, and if q2 ≥ q1, then k − q1 > l − q2 and he can play on
the right of x1 and y1 using ωi(k − q1) + ωi−1 · 3 6≡n ωi(l − q2) + ωi−1 · 3, which
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follows by the induction hypothesis, since l − q2 < 2n−2i. For if k ≥ 2n+1−2i, then
q2 ≥ q1 = 2n−2i, so l − q2 < 2n+1−2i − 2n−2i = 2n−2i and if k < 2n+1−2i, then
q1 = [k2 ], so l − q2 < k − q1 ≤ k+1

2 ≤ 2n−2i.

Corollary 2.8. If n ≥ 4 is even and t = n
2 , then

(i) ωt + ωt−2 ·m ≡n ωt−1 · 3 + ωt−2 ·m for m ≥ 4,
(ii) ωt + ωt−2 · l 6≡n ωt−1 · 3 + ωt−2 · l for l < 4.

This follows from Lemma 2.7 on taking k = ω and i = t− 1.

Lemma 2.9. Let α and β be n-equivalent ordinals such that α = ωj · γ for some
γ ≥ 1. If i ≤ n−3

2 , i < j ≤ n
2 and k ≥ 2n−2i − 4 > m is finite, then

(i) α+ ωi · k ≡n β + ωi(2n−2i − 4),
(ii) α+ ωi · k 6≡n β + ωi ·m.

Proof. (i) Observe that as i ≤ n−3
2 , n− 2i ≥ 3, so 2n−2i − 4 ≥ 4.

We use induction. When n = 3, i must be 0, and we have to show that α+ k ≡3

β + 4 for k ≥ 4, which holds since these two ordinals have the same 2-characters
(as α > 0 is a limit ordinal, and hence so is β since α ≡3 β).

For the induction step, assume the result for n ≥ 3, and let A = α + ωi · k,

B = β+ωi(2n+1−2i−4), where α ≡n+1 β, i ≤ (n+1)−3
2 = n

2−1, and k ≥ 2n+1−2i−4,

and we show that A ≡n+1 B. If i = n
2 − 1 then n is even and A = α + ωi · k,

B = β + ωi · 4, where k ≥ 4. Then player II can play so that for some γ < ωi,
x1 ∈ α⇔ y1 ∈ β and II has used his winning strategy in the (n+ 1)-move game

on α and β,
or x1 = α + ωi · r + γ, y1 = β + ωi · s + γ, where γ < ωi and r = s = 0 or

k − r = 4− s < 4,
or x1 = α+ ωi · r + γ and y1 = ωi · 4 + γ where 0 < r ≤ k − 4.
In these four cases we find that for some α1 ≡n β1,
A>x1 ∼= α1 + ωi · k, B>y1 ∼= β1 + ωi · 4, and A>x1 ≡n B>y1 by Lemma 2.3(i),
if r = s = 0 then A>x1 ∼= ωi · k, B>y1 ∼= ωi · 4, so again A>x1 ≡n B>y1 by

Lemma 2.3(i),
if k − r = 4 − s < 4, then A>x1 ∼= B>y1 , and as r, s > 0, A<x1 ≡n B<y1 by

Lemmas 2.6(i) and 2.3(i),
if 0 < r ≤ k−4, then A<x1 ∼= α+ωi ·r+γ, B<y1 ∼= ωi ·4+γ, and A>x1 ∼= ωi(k−r),

B>y1 ∼= β + ωi · 4, so A<x1 ≡n B<y1 and A>x1 ≡n B>y1 both follow from Lemmas
2.6(i) and 2.3(i).

If i < n
2 − 1 then i ≤ n−3

2 . We observe that we may write

A = α+ ωi(2n−2i − 4) + ωi(k − (2n+1−2i − 4)) + ωi · 2n−2i and
B = β + ωi(2n−2i − 4) + ωi · 2n−2i.
Player II can play so that
x1 ∈ α⇔ y1 ∈ β and he has used his winning strategy in the (n+ 1)-move game

on α and β,
or x1 = α+ γ where γ < ωi(2n−2i − 3), and y1 = β + γ,
or x1 = α + ωi · q1 + γ where γ < ωi, 2n−2i − 4 < q1 ≤ k − 2n−2i, and

y1 = β + ωi(2n−2i − 4) + γ,
or x1 = α + ωi · q2 + γ and y1 = β + ωi · q3 + γ where γ < ωi, q2 > k − 2n−2i,

q3 > 2n−2i − 4 and A>x1 ∼= B>y1 ≤ ωi · 2n−2i.
The first case is as above.
In the second case, A<x1 ≡n B<y1 . Also, we see that A>x1 ∼= ωi · r1 and B>y1 ∼=

ωi·r2 where r1 ≥ k−(2n−2i−4) and r2 ≥ 2n−2i. We note that k−(2n−2i−4) ≥ 2n−2i

since k ≥ 2n+1−2i − 4. Therefore A>x1 ≡n B>y1 by Lemma 2.3(i).
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In the third case, by the induction hypothesis, A<x1 ≡n B<y1 . In addition,
A>x1 ∼= ωi · s where s ≥ 2n−2i and B>y1 ∼= ωi · 2n−2i. By Lemma 2.3(i), A>x1 ≡n
B>y1 .

In the final case, A>x1 ≡n B>y1 , and A<x1 ≡n B<y1 by the induction hypothesis.
(ii) We use induction, with n = 3 as the the basis case. Here, i = 0 and

m < 4 ≤ k, and we have to show that α + k 6≡3 β + m. Since α and β are limit
ordinals, α + k exhibits the 2-character 〈ω, 3〉, but β + m does not, so they are
3-inequivalent.

Now assume the result for n ≥ 3 and we prove it for n+1. Let A = α+ωi ·k and

B = β + ωi ·m where m < 2n+1−2i − 4 ≤ k, α ≡n+1 β, and i ≤ (n+1)−3
2 = n

2 − 1.

Then A can be written in the form α+ ωi(2n−2i − 4) + ωi · q where q ≥ 2n−2i.

Case 1: i = 0.
Player I plays x1 = α+2n−4. Then |A>x1 | ≥ 2n−1 so if II plays y1 and |B>y1 | <

2n − 1 then I wins (playing on the right) by the finite case. If |B>y1 | ≥ 2n − 1 and
y1 ≥ β, then A<x1 ∼= α+ 2n− 4 and B<y1 ∼= β+ r where r ≤ m− 2n < 2n− 4, so I
wins in the remaining n moves playing on the left using the induction hypothesis.

Case 2: 0 < i < n
2 − 1.

Player I plays x1 = α + ωi(2n−2i − 4). By Lemma 2.2 we may assume that II
plays a non-trivial multiple y1 of ωi.

If y1 ≥ β and B>y1 < ωi · 2n−2i, then A>x1 6≡n B>y1 by Lemma 2.3(ii), and I
wins.

If y1 ≥ β, and B>y1 ≥ ωi · 2n−2i, then B<y1 ∼= β + ωi · s1 where s1 < 2n−2i − 4
and A<x1 6≡n B<y1 by induction hypothesis.

If however y1 < β, then player I plays y2 = β on his second move. By Lemma
2.2 we may suppose that II plays a multiple x2 = x1 + ωi · s2 of ωi, with s2 > 0.
Now I plays x3 = x1 + ωi(s2 − 1), and whatever y3 II plays, (x3, x2) ∼= ωi and
(y3, y2) ∼= ωj · s3 for some s3 > 0. By Theorem 1.4(iii), ωi 6≡2i+1 ω

j · s3, and since
2i+ 1 ≤ n− 2, I wins.

Case 3: i = n
2 − 1. Then 2n+1−2i − 4 = 4 so m < 4 ≤ k. Player I chooses

x1 = α+ωi(k− 3) ∈ A, so that A>x1 ∼= ωi · 3. By Lemma 2.2 we may assume that
II picks a multiple y1 of ωi. If y1 > β then A>x1 6≡n B>y1 follows from Lemma
2.3(ii). If y1 = β, I plays x2 < x1 so that (x2, x1) ∼= ωi, and (y2, y1) must be a
multiple of ωj , so (x2, x1) 6≡2i+1 (y2, y1) by Theorem 1.4(iii), and as 2i+ 1 = n− 1,
I wins. Finally, if y1 < β, A>x1 ∼= ω

n
2−1 · 3 and B>y1 ∼= ω

n
2 + ω

n
2−1, and so

A>x1 6≡n B>y1 by Lemma 2.6(ii).

We next give an inductive generalization of Lemma 2.7.

Lemma 2.10. If 0 < r ≤ i < n
2 , then

(i) ωi · 2n−2i + ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r · 4 ≡n
ωi(2n−2i − 1) + ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r · 4,

(ii) if bj ≤ 3 for all j < i, or for some k < i, bj ≤ 3 for all j such that
k ≤ j < i and bk ≤ 2, then ωi · 2n−2i + ωi−1 · ai−1 + . . . + ω · a1 + a0 6≡n
ωi(2n−2i − 1) + ωi−1 · bi−1 + . . .+ ω · b1 + b0.

Proof. (i) We use induction on n. The case r = 1 is covered by Lemma 2.7(i),
so we suppose that r ≥ 2, which means that there is at least one term in the
sum having a coefficient of 3. Let A = ωi · 2n−2i + ωi−1 · 3 + . . . + ωi−r · 4 and
B = ωi(2n−2i − 1) + ωi−1 · 3 + . . .+ ωi−r · 4.

We first consider the case where i = n−1
2 , in which case n is odd, and A =

ωi · 2 + ωi−1 · 3 + . . .+ ωi−r · 4 and B = ωi + ωi−1 · 3 + . . .+ ωi−r · 4. Here we use
induction on r. Player II can play so that one of the following holds:
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x1 = y1 < ωi and so A<x1 ≡n−1 B
<y1 , and A>x1 ∼= ωi ·2+ωi−1 ·3+ . . .+ωi−r ·4

and B>y1 ∼= ωi + ωi−1 · 3 + . . . + ωi−r · 4, and so A>x1 ≡n−1 B
>y1 by Theorem

1.4(i).
ωi ≤ x1 = y1 < ωi + ωi−1, giving A<x1 ≡n−1 B

<y1 , and in addition A>x1 ∼=
ωi + ωi−1 · 3 + . . .+ ωi−r · 4 and B>y1 ∼= ωi−1 · 3 + . . .+ ωi−r · 4.

By Lemma 2.6(i), ωi+ωi−1·3+. . .+ωi−r ·4 ≡n−1 ω
i−1·4+ωi−2·3+. . .+ωi−r ·4, so

we just have to check that ωi−1 ·4+ωi−2 ·3+. . .+ωi−r ·4 ≡n−1 ω
i−1 ·3+ωi−2 ·3+. . .+

ωi−r ·4. Player II may play so that x2 = y2 < ωi−1·3, or x2 = ωi−1+y2 ≥ ωi−1·3. To
make sure that this works, we have to check in the first case that A>x2 ≡n−2 B

>y2 ,
and in the second case, that (x1, x2) ≡n−2 (y1, y2). The former requires that
ωi−1 · 2 +ωi−2 · 3 + . . .+ωi−r · 4 ≡n−2 ω

i−1 +ωi−2 · 3 + . . .+ωi−r · 4, which follows
from the induction hypothesis (on r), as i − r = (i − 1) − (r − 1), and the second
says that ωi−1 · 3 ≡n−2 ω

i−1 · 2, which follows from Lemma 2.3(i).
x1 = ωi+ωi−1 +γ and y1 = ωi−1 ·4+γ for some γ < ωi. Then A<x1 ≡n−1 B

<y1

by Lemma 2.6(i). Furthermore, A>x1 ∼= B>y1 ∼= ωi + ωi−1 · 3 + . . . + ωi−r · 4 and
hence A>x1 ≡n B>y1 .

Otherwise x1 is an element of the last segment ωi−1 ·3+ωi−2 ·3+ . . .+ωi−r ·4 of
A and y1 is the corresponding point in the last segment of B. Then A>x1 ∼= B>y1 ,
so A>x1 ≡n−1 B

>y1 . In addition, A<x1 ∼= ωi · 2 + γ and B<y1 ∼= ωi + γ, where
γ < ωi. By Theorem 1.4(i), A<x1 ≡n−1 B

<y1 .
Finally suppose that 0 ≤ r ≤ i < n−1

2 . Player II can play so that one of the
following occurs:
x1 = y1 < ωi(2n−1−2i + 1), giving A<x1 ≡n−1 B

<y1 , and A>x1 ∼= ωi · q1 + ωi−1 ·
3 + . . .+ ωi−r · 4 and B>y1 ∼= ωi · q2 + ωi−1 · 3 + . . .+ ωi−r · 4 where q1 ≥ 2n−1−2i

and q2 ≥ 2n−1−2i − 1, in which case A>x1 ≡n−1 B
>y1 by induction hypothesis.

x1 = ωi(2n−1−2i + 1) + γ and y1 = ωi · 2n−1−2i + γ for some γ, and by Lemma
2.3(i), A<x1 ≡n−1 B

<y1 , and A>x1 ∼= B>y1 so A>x1 ≡n−1 B
>y1 .

(ii) Let A = ωi · 2n−2i + ωi−1 · ai−1 + . . .+ ω · a1 + a0 and B =
ωi(2n−2i−1) +ωi−1 · bi−1 + . . .+ω · b1 + b0. Player I chooses x1 < x2 < . . . < xn−2i

where xj = ωi(2n−2i−2n−j−2i). By Lemma 2.2 applied successively to n, n−1, . . .,
2i+ 1 we may suppose that II’s moves are y1 < y2 < . . . < yn−2i where yj = ωi · tj
for some tj . If t1 < 2n−1−2i then by Lemma 2.3(ii) I wins by playing to the left
of x1, y1 in the remaining n − 1 moves, since A<x1 ∼= ωi · 2n−1−2i 6≡n−1 ω

i · l ∼=
B<y1 , where l < 2n−1−2i. Similarly, if any interval (yj , yj+1) is shorter than the
corresponding interval (xj , xj+1), then I wins there in the remaining n − j − 1
moves. So we may suppose that t1 ≥ 2n−1−2i and tj+1 − tj ≥ 2n−j−1−2i, so as∑n−2i
j=1 2n−j−2i = 2n−2i − 1, in fact yj = xj for each j.

In the remaining 2i moves, I plays on the right, and as A>xn−2i ∼= ωi + ωi−1 ·
ai−1 + . . .+ ω · a1 + a0 and B>yn−2i ∼= ωi−1 · bi−1 + . . .+ ω · b1 + b0 (except that if
i = 1, B>yn−2i ∼= b0−1) we just have to see that ωi+ωi−1 ·ai−1 +. . .+ω ·a1 +a0 6≡2i

ωi−1 · bi−1 + . . .+ ω · b1 + b′0 (where b′0 = b0 if i > 1 and it equals b0 − 1 if i = 1),
and to make the induction work, we actually show that for any ordinal α > 0,
ωi · α+ ωi−1 · ai−1 + . . .+ ω · a1 + a0 6≡2i ω

i−1 · bi−1 + . . .+ ω · b1 + b′0. The basis
case i = 1 says that ω · α + a0 6≡2 b0 − 1 which holds since b0 ≤ 3: if a0 6= 0 then
ω ·α+ a0 ≡2 3 6≡2 b0− 1 as b0 ≤ 3, and if a0 = 0, ω ·α+ a0 6≡2 b0− 1 is immediate.

Assuming the result for i, we describe a winning strategy for player I in the
(2i + 2)-move game on Ai+1 = ωi+1 · α + ωi · ai + . . . + ω · a1 + a0 and Bi+1 =
ωi · bi + . . . + ω · b1 + b′0. On his first two moves, player I plays x1 = ωi · 2 and
x2 = ωi · 3. Let y1, y2 be player II’s responses. By Lemma 2.2 we suppose that
y1 = ωi · t1 and y2 = ωi · t2. Then 0 < t1 < t2 ≤ 3 so t1 ≤ 2. If t1 = 1 then
A<x1
i+1
∼= ωi · 2 and B<y1i+1

∼= ωi. By Theorem 1.4(iii), A<x1
i+1 6≡2i+1 B

<y1
i+1 so I wins
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in the remaining 2i + 1 moves. Otherwise, t1 = 2 and t2 = 3 (so actually bi = 3).
Therefore Ai = A>x2

i+1
∼= ωi+1 · α + ωi · ai + ωi−1 · ai−1 + . . . + ω · a1 + a0 and

Bi = B>y2i+1
∼= ωi−1 · bi−1 + . . . + ω · b1 + b′0, noting that in the special case where

i = 1, since y2 is the first point of the finite block at the end, the previous value
of b′0 which equalled b0 has decreased by 1, to the new (and correct) value of b′0.
Since Ai may be written in the form ωi(ω · α+ ai) + ωi−1 · ai−1 + . . .+ ω · a1 + a0,
we may appeal to the induction hypothesis to see that this is not 2i-equivalent to
Bi, giving the induction step.

The next lemma is similar to the previous one, though proved without using
induction.

Lemma 2.11. If α is an ordinal of the form ωj · γ where γ ≥ 1, and α ≡n β,
1 ≤ i < n

2 − 1, 0 < r ≤ i < j ≤ n
2 , and m ≥ 4, then

(i) α+ ωi(2n−2i − 4) + ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r ·m
≡n β + ωi(2n−2i − 5) + ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r ·m,

(ii) if bk ≤ 3 for all k < i, or for some l < i, bk ≤ 3 for all k such that l ≤ k < i
and bl ≤ 2, then α+ ωi(2n−2i − 4) + ωi−1 · ai−1 + . . .+ ω · a1 + a0

6≡n β + ωi(2n−2i − 5) + ωi−1 · bi−1 + . . .+ ω · b1 + b0.

Proof. (i) Let A = α + ωi(2n−2i − 4) + ωi−1 · 3 + . . . + ωi−r+1 · 3 + ωi−r ·m and
B = β + ωi(2n−2i − 5) + ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r ·m.

First suppose that i = n−3
2 (so that n is odd). Here 2n−2i = 8, so A =

α+ ωi · 4 + ωi−1 · 3 + . . .+ ωi−r ·m and B = β + ωi · 3 + ωi−1 · 3 + . . .+ ωi−r ·m.
Player II may play so that one of the following holds:
x1 ∈ α and y1 ∈ β correspond under a winning strategy for II in α ≡n β,
x1 and y1 are corresponding points of the r0th and r1th copies of ωi where

r0 = r1 = 0 or r0 = r1 + 1 ≥ 2,
x1 and y1 are corresponding points of the r0th copy of ωi in the ωi · 4 section of

A and of the r1th copy of ωi in β where r0 = 1 and r1 = 4,
x1 and y1 are corresponding points of ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r ·m.
To show that this works, we need to verify the following (n− 1)-equivalences:
ωi · 4 + ωi−1 · 3 + . . . + ωi−r ·m ≡n−1 ω

i · 3 + ωi−1 · 3 + . . . + ωi−r ·m, which
follows from Lemma 2.10(i), since 0 < r ≤ i < n−1

2 , and since n− 1− 2i = 2,

α+ ωi · 2 ≡n−1 β + ωi, which follows from Theorem 1.4(i),
α+ ωi ≡n−1 ω

i · 4, which follows from Lemma 2.6(i), and
ωi · 3 + ωi−1 · 3 + . . .+ ωi−r ·m ≡n−1 β + ωi · 3 + ωi−1 · 3 + . . .+ ωi−r ·m, which

holds since β + ωi · 3 + ωi−1 · 3 + . . .+ ωi−r ·m
≡n−1 ω

i · 4 + ωi−1 · 3 + . . .+ ωi−r ·m by Lemma 2.6(i)
≡n−1 ω

i · 3 + ωi−1 · 3 + . . .+ ωi−r ·m by Lemma 2.10(i),
α+ ωi · 4 ≡n−1 β + ωi · 3, which follows from Lemma 2.6(i).
Next consider the case where i < n−3

2 . Then n− 1− 2i > 2 so 2n−1−2i − 4 ≥ 4.
We subdivide A and B as follows:
A = α+ωi(2n−1−2i−4)+ωi+ωi(2n−1−2i−1)+ωi−1 ·3+. . .+ωi−r+1 ·3+ωi−r ·m,
B = α+ωi(2n−1−2i−4) +ωi(2n−1−2i−1)+ωi−1 ·3+. . .+ωi−r+1 ·3+ωi−r ·m.
Then II can play so that one of the following holds:
x1 ∈ α and y1 ∈ β correspond under a winning strategy for II in α ≡n β,
x1 and y1 are corresponding points of the ωi(2n−1−2i − 4), ωi(2n−1−2i − 1), or

ωi−1 · 3 + . . .+ ωi−r+1 · 3 + ωi−r ·m sections,
x1 lies in the middle ωi section of A, and y1 is the corresponding point of the

first ωi of the ωi(2n−1−2i − 1) section of B.
To see that this works, we need to verify the following (n− 1)-equivalences:
ωi · 2n−1−2i +ωi−1 · 3 + . . .+ωi−r+1 · 3 +ωi−r ·m ≡n−1 ω

i(2n−1−2i− 1) +ωi−1 ·
3 + . . .+ ωi−r+1 · 3 + ωi−r ·m, which follows from Lemma 2.10(i),
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α+ωi(2n−1−2i−3) ≡n−1 β+ωi(2n−1−2i−4), which follows from Lemma 2.9(i).
(ii) Let A = α + ωi(2n−2i − 4) + ωi−1 · ai−1 + . . . + ω · a1 + a0 and B = β +

ωi−1(2n−2i − 5) + ωi−1 · bi−1 + . . . + ω · b1 + b0. On his first move, player I plays
x1 = α+ωi(2n−1−2i−4). By Lemma 2.2 we may suppose that II plays a multiple y1

of ωi. If y1 ≥ β+ωi(2n−1−2i−4) then A>x1 ∼= ωi·2n−1−2i+ωi−1·ai−1+. . .+ω·a1+a0

and B>y1 ∼= ωi · q1 +ωi−1 · bi−1 + . . .+ω · b1 + b0 for some q1 < 2n−1−2i, and I wins
by Lemma 2.10(ii).

We suppose therefore that y1 < β + ωi(2n−1−2i − 4). If y1 = β + ωi · q2 for
some q2 < 2n−1−2i − 4, then I wins by Lemma 2.9(ii). Otherwise, y1 < β. Next I
plays y2 > y1 so that (y1, y2) ∼= ωi+1, and whatever x2 II plays, (x1, x2) ∼= γ1 + ωr

for some ordinal γ1, where r ≤ i. Thus, provided i + 1 ≤ n−2
2 , I wins by using

Lemma 2.1. If this fails, then i+ 1 > n−2
2 , and since i < n

2 − 1, the only possibility

remaining that we need to cover is where i = n−3
2 (so in particular, n is odd).

Since n − 2i = 3, in this case, A = α + ωi · 4 + ωi−1 · ai−1 + . . . + ω · a1 + a0 and
B = β + ωi · 3 + ωi−1 · bi−1 + . . .+ ω · b1 + b0.

In this instance, player I plays x1 = α + ωi · 2 and unless II plays in β, as we
have seen, I can win as before, so suppose that y1 < β. Now player I plays y2 so
that (y1, y2) ∼= ωi+1. By Lemma 2.2, since i < n−1

2 , we may suppose that II now

plays a multiple x2 of ωi. If x2 = α+ωi · 3, then (x1, x2) ∼= ωi and (y1, y2) ∼= ωi+1,
and I wins by Theorem 1.4(iii) since 2i + 1 = n − 2. Otherwise, x2 = α + ωi · 4,
and now player I plays y3 so that (y2, y3) ∼= ωi, and as i < n−2

2 , we may suppose

that II plays a multiple of ωi. But since x2 = α+ ωi · 4 this is impossible, and so I
wins.

We are now ready to state the conditions which feature in the main result of this
section. Recall that t stands for the integer part of n

2 .
One of the clauses refers to the notion of ‘n-optimality’ of a coefficient; this is

only required when this coefficient is 3, and we find it easiest to give an explicit
definition. Namely, 3 is an n-optimal coefficient for ωk in α = ωi ·ai+ . . .+a0 ∈ Ω′n
if ai 6= 0, k < i, ak = 3 and either i < n

2 and ai = 2n−2i, ai−1 = . . . = ak = 3, or for

some j < i such that k < j, aj = 2n−2j − 4, aj−1 = . . . = ak = 3. (The intuition,
and an alternative definition as in [3], is that increasing the coefficient of ωk from
3 to 4 results in an ordinal which does not lie in Ω′n—see Lemmas 2.10 and 2.11,
but this seems harder to work with in practice.)

For any n ≥ 0, we let Ω′n be the set of ordinals of the form

ωt · at + ωt−1 · at−1 + ωt−2 · at−2 + . . .+ ω · a1 + a0

such that

ai ≤



2n−2i (1)
2n−2i − 4 if aj 6= 0 for some j > i (2)
3 if i < n

2 − 1 and ai+1 = 2n−2(i+1) or (3)
if ai+1 = 2n−2(i+1) − 4 and aj 6= 0 for some j > i+ 1 or (4)
if ai+1 = 3 and 3 is an n-optimal coefficient for ωi+1 (5)

2n − 1 if i = 0 and aj = 0 for all j > 0 (6)

In Lemma 2.12 we shall establish ‘optimality’.

Lemma 2.12. Let α = ωi · ai + ωi−1 · ai−1 + . . .+ ω · a1 + a0 and β =
ωi · bi + ωi−1 · bi−1 + . . .+ ω · b1 + b0 where α ∈ Ω′n. If α > β, then α 6≡n β.

Proof. We must show that player I has a winning strategy in the n-move game on
α and β. Since α ∈ Ω′n, aj ≤ 2n−2j for each j.
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If ai = 0 then as β < α, also bi = 0, so these terms could be omitted. We may
therefore assume that ai 6= 0. If α is finite, then the result follows from Lemma 1.3,
so from now on we assume that α is infinite, that is, i > 0.

Let j be the largest number such that a0 = a1 = . . . = aj−1 = 0 (so that j ≤ i).
Unless also b0 = b1 = . . . = bj−1 = 0, I can win, as otherwise if r < j is the least
such that br 6= 0 then we can write α as ωj · γ0 and β as γ1 +ωr, so by Lemma 2.1,
α 6≡n β. Similarly in reverse. Hence we may suppose that the last non-zero terms
of the expressions for α and β occur at the same point.

We now fix j ≤ i as the first point for which aj 6= bj . Since α > β, aj > bj .

Case 1: aj−1 = aj−2 = . . . = a0 = 0. Then by the above, also bj−1 = bj−2 =
. . . = b0 = 0. If j = i then α 6≡n β by Lemma 2.3(ii). If j < i then by clause (2),
aj ≤ 2n−2j − 4. Since aj > 0, it follows that n− 2j > 2, so that n−3

2 ≥ j. We may
therefore appeal to Lemma 2.9(ii) to see that α 6≡n β. (Strictly speaking, we have
to deal with the case where aj < 2n−2j−4, but if ωi ·ai+. . .+ωj+1 ·aj+1 +ωj ·aj ≡n
ωi ·ai+ . . .+ωj+1 ·aj+1 +ωj ·bj then also ωi ·ai+ . . .+ωj+1 ·aj+1 +ωj(2n−2j−4) ≡n
ωi · ai + . . .+ ωj+1 · aj+1 + ωj(bj + 2n−2j − 4− aj) to which the lemma applies.)

Case 2: For some r ≤ n
2−2, br < ar and br < 2n−2−2r or ar < br and ar < 2n−2−2r.

We suppose that br < ar and br < 2n−2−2r.
On his first move, player I chooses x1 = ωi · ai + . . . + ωr+1 · ar+1 ∈ α. Since

r + 1 < n
2 , by Lemma 2.2 we may suppose that y1 is a multiple of ωr+1.

If y1 < ωi · bi + . . .+ ωr+1 · br+1 then I plays y2 = ωi · bi + . . .+ ωr+1 · br+1, and
now (y1, y2) is a multiple of ωr+1. Whatever x2 is played by II, (x1, x2) ∼= γ+ωs for
some s ≤ r, and so as s < r+ 1 ≤ n−2

2 , I wins by appeal to Lemma 2.1. If however

y1 = ωi ·bi+. . .+ωr+1 ·br+1, I instead plays x2 = ωi ·ai+. . .+ωr+1 ·ar+1+ωr(br+1),
provided this is < α (and if it equals α, he plays x2 = ωi ·ai+. . .+ωr+1 ·ar+1+ωr ·br;
this happens if ar = br+1 and all as for s < r are zero). Since r < n−1

2 , Lemma 2.2
allows us to assume that II plays a multiple y2 of ωr. Then (x1, x2) ∼= ωr(br + 1)
(or ωr · br in the second case) and (y1, y2) ∼= ωr · t0 where t0 ≤ br (or t0 < br in the
second case). It follows by Lemma 2.3(ii) that (x1, x2) 6≡n−2 (y1, y2), and so I wins
in the remaining n− 2 moves.

Cases 3, 4, 5, and 6 cover all instances in which j = i.

Case 3: j = i < n
2 and bi < 2n−1−2i.

Player I chooses x1 = ωi(bi+1). Let y1 ∈ β be II’s reply. By Lemma 2.2 we may
suppose that y1 = ωi · t1 for some t1 and then β<y1 6≡n−1 α

<x1 by Lemma 2.3(ii).

Case 4: j = i < n
2 and 2n−1−2i ≤ bi ≤ 2n−2i − 2.

Player I plays x1 < x2 < . . . as far as possible so that x1 = ωi · 2n−1−2i, and
(xk, xk+1) ∼= ωi · 2n−k−1−2i. Since ai > 2n−1−2i, x1 exists. Now assume that
x1, x2, . . . , xk have been chosen fulfilling these conditions. Then xk = ωi(2n−1−2i+
2n−2−2i + . . . + 2n−k−2i) = ωi(2n−2i − 2n−k−2i). Thus ai ≥ 2n−2i − 2n−k−2i,
and if ai ≥ 2n−2i − 2n−k−1−2i then xk+1 can be chosen as desired. Otherwise, if
xk = ωi · ai, then we stop with r = k, and if xk < ωi · ai we let xk+1 = ωi · ai and
r = k+1. Then (xk, xk+1) ∼= ωi(ai−(2n−2i−2n−k−2i)) < ωi((2n−2i−2n−k−1−2i)−
(2n−2i− 2n−k−2i)) = ωi(2n−k−2i− 2n−k−1−2i). Note that r ≤ n− 2i, and there are
n− r ≥ 2i moves remaining.

Let II’s moves in β be y1 < y2 < . . . < yr. By Lemma 2.2 applied to n, n −
1, . . . , n− (r−1) we may suppose that yk = ωi · tk for some tk. If t1 < 2n−1−2i then
I wins by Lemma 2.3(ii), and similarly if any of the intervals between successive
yks is less than the corresponding intervals between the xks. So we suppose that
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t1 ≥ 2n−1−2i, t2 ≥ 2n−2−2i, and so on, which shows that bi ≥ ai after all, contrary
to supposition.

Case 5: j = i < n
2 and bi = 2n−2i − 1.

It follows from the hypotheses that ai = 2n−2i.
To streamline consideration of the cases which can arise, we note that by Lemma

2.10(ii), if bl ≤ 3 for all l ≤ i − 1, or if there is k ≤ i − 1 such that bl ≤ 3 for all l
with k ≤ l ≤ i − 1 and bk ≤ 2, then ωi · 2n−2i + ωi−1 · ai−1 + . . . + ω · a1 + a0 6≡n
ωi(2n−2i − 1) + ωi−1 · bi−1 + . . .+ ω · b1 + b0. Thus we may assume that for some
l ≤ i − 1, bi−1 = bi−2 = . . . = bl+1 = 3 and bl > 3. Let k be greatest such that
l ≤ k ≤ i − 1 and ak 6= bk. This exists, since if not, then ak = bk for all k in this
range, which implies that al > 3, violating clause (5) (or clause (3) if l = i − 1).
Hence, if k < m ≤ i−1, am = bm = 3, so by the definition of ‘n-optimal coefficient’,
and clause (5), ak ≤ 3, and hence ak < bk.

Case 5A: For the k just defined, k ≤ n
2 − 2.

Since ak ≤ 3 < 4 = 2n−2−n+4 ≤ 2n−2−2k, the result follows from Case 2.

Case 5B: k > n
2 − 2.

It follows that k ≥ n−3
2 , so as k < i < n

2 , n must be odd, i = n−1
2 , and k = i−1.

Then α = ωi · 2 + ωi−1 · ai−1 + . . . + a0 and β = ωi + ωi−1 · bi−1 + . . . + b0,
ai−1 ≤ 3 and ai−1 < bi−1. Let m be least if any such that ai−1 = . . . = am = 3.
Then if m exists, either m = 0 or am−1 < 3, and if it does not exist, then ai−1 < 3.
Now I plays x1 = ωi · 2, and by appealing to Lemma 2.2, II must play y1 = ωi.
Next I plays y2 = ωi + ωi−1 · 2 and by Lemma 2.2 we see that player II must play
x2 = ωi · 2 + ωi−1 · t0, where 0 < t0 ≤ ai−1. If t0 = 1, then (x1, x2) ∼= ωi−1 6≡2i−1

ωi−1 · 2 ∼= (y1, y2) by Theorem 1.4(iii), and 2i − 1 = n − 2, so I wins. Hence we
suppose that t0 = 2. It follows that β > ωi + ωi−1 · 3, as if β = ωi + ωi−1 · 3 then
bi−1 = 3 and bm = 0 for all m < i − 1 and therefore ai−2 = 2 and am = 0 for all
m < i − 1. Hence I can play y3 = ωi + ωi−1 · 3. By Lemma 2.2, II must respond
with x3 = ωi · 2 + ωi−1 · t1 where t0 < t1 ≤ ai−1. Thus t1 = 3 (so that ai−1 = 3,
and m is defined, and bi−1 > 3). On subsequent moves, player I plays in β in the
section (ωi + ωi−1 · 3, ωi + ωi−1 · 4) at intervals of ωi−2, and player II is unable to
respond at all stages, and I wins.

Case 6: j = i = n
2 .

Thus n is even. By clause (2), ai−1 ≤ 22−4 = 0, so α = ωi+ωi−2 ·ai−2 + . . .+a0

and β = ωi−1 · bi−1 + . . .+ b0. By clause (4), ai−2 ≤ 3.
If bi−1 = 0, player I plays x1 = ωi and by Lemma 2.2, player II must play a

multiple of ωi−1, but this is impossible, and so he loses. From now on we therefore
suppose that bi−1 > 0.

Look at the first k ≤ i − 2, if any, such that ak 6= bk or ak = bk 6= 3. By
clause (4) or (5), ak ≤ 3. Hence if ak 6= bk, we may use Case 2 to deduce that
α 6≡n β. If ak = bk 6= 3, then as ak ≤ 3, actually ak = bk < 3, and by maximality
of k, bi−2 = bi−3 = . . . = bk+1 = 3. Player I plays y1 = ωi−1(bi−1 − 1). Then
by Lemma 2.2, II must play a multiple of ωi−1. If this is x1 = ωi, then I plays
y2 = ωi−1 · bi−1 and (x1, x2) ∼= γ + ωr for some ordinal γ, and r ≤ i − 2, so as
r < i− 1 ≤ n−2

2 , I wins in the remaining n− 2 moves by Lemma 2.1. Now assume

that II plays x1 = ωi−1 · t0 for some finite t0. From now on, I plays x2, x3, . . .
as long as necessary so that (xs, xs+1) ∼= ωi−1. Let y2, y3, . . . be II’s replies. If
y2 = γ + ωr for some r ≤ i − 2 then I wins by Lemma 2.1. So we assume that
y2 = ωi−1 · bi−1. If for some s ≥ 2, (ys, ys+1) 6≡n−s−1 ωi−1, then I can win on
(xs, xs+1) and (ys, ys+1) in the remaining n − s − 1 moves, so we show that this
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happens for some s ≤ n − 1. Suppose for a contradiction therefore that for each
s ≤ n− 1, (ys, ys+1) ≡n−s−1 ω

i−1.
Let (ys, ys+1) ∼= γ + ωr. Then if r ≤ n−s−3

2 , by Lemma 2.1, (ys, ys+1) 6≡n−s−1

ωi−1. Hence r > n−s−3
2 . If s is even this tells us that r ≥ n−s−2

2 , and if s is odd,

that r ≥ n−s−1
2 . We deduce that y3 = y2 + ωi−2 · t0 and y4 = y2 + ωi−2 · t1 for

some t1 > t0 > 0. By Theorem 1.4(iii), ωi−1 6≡n−3 ωi−2, so as (x2, x3) ∼= ωi−1

and (x2, x3) 6≡n−3 (y2, y3), it follows that (y2, y3) 6∼= ωi−2 and hence t0 > 1. Since
y4 ≤ ωi−1 · bi−1 + ωi−2 · bi−2 and bi−2 = 3 we deduce that t0 = 2, t1 = 3,
and y4 = ωi−1 · bi−1 + ωi−2 · bi−2. Repeating this argument, we find that y6 =
ωi−1 · bi−1 + ωi−2 · bi−2 + ωi−3 · bi−3, . . ., and when we reach the term in ωk, the
corresponding t0 is forced to be 1 since bk ≤ 2, giving a contradiction.

Finally, suppose that there is no such k. It follows from clause (5) that for every
k ≤ i−2, ak = bk = 3. In the play described above, player II’s moves must continue
to the constant term. He has now played 2(i − 1) + 1 = n − 1 moves and ends by
playing the final point of β, so I wins on the last move.

We now consider cases in which j < i, and subdivide in a a similar way to Cases
3-6. Since we suppose that Case 1 does not apply, ak 6= 0 for some k < j. Note
further that if j = n

2 − 1 then i = n
2 , so that aj = 0, contrary to bj < aj . Hence

j < n
2 − 1. By clause (2), aj ≤ 2n−2j − 4.

Case 7: j < i, ak 6= 0 for some k < j, and bj < 2n−1−2j − 4.
Note that it follows from this that n− 1− 2j > 2, so j < n−3

2 .

Player I chooses x1 = ωi · ai + . . .+ ωj+1 · aj+1 + ωj(bj + 1). Then II’s response
y1 must be a multiple of ωj (using Lemma 2.2, since j < n

2 ). If y1 < ωi · ai +

. . . + ωj+1 · aj+1 then I plays y2 = ωi · ai + . . . + ωj+1 · aj+1. Whatever II’s
reply x2 is, x2 = γ + ωr for some r ≤ j, so as r < j + 1 ≤ n−2

2 , I wins using

Lemma 2.1. If y1 = ωi · ai + . . . + ωj+1 · aj+1 then I plays x2 < x1 so that
(x2, x1) ∼= ωj . Whatever y2 is chosen by II, (y2, y1) is a multiple of ωj+1, and so by
Theorem 1.4(iii), (x2, x1) 6≡2j+1 (y2, y1), so as 2j + 1 ≤ n − 2, I wins. Otherwise,
y1 = ωi ·ai+ . . . ωj+1 ·aj+1 +ωj · t1 for some t1 with 0 < t1 ≤ bj . By Lemma 2.9(ii)
(recalling the remark at the end of Case 1), α<x1 6≡n−1 β

<y1 , so I wins.

Case 8A: j < i, ak 6= 0 for some k < j, j < n−3
2 , and 2n−1−2j−4 ≤ bj < 2n−2j−5.

We follow a similar strategy to Case 4.
Player I chooses x1 < x2 < . . . as far as possible so that xl = ωi ·ai+ . . .+ωj+1 ·

aj+1 + ωj · tl, where tl = 2n−2j − 2n−l−2j − 4, and at the first point where this is

impossible, that is, 2n−2j − 2n−(l−1)−2j − 4 ≤ aj < 2n−2j − 2n−l−2j − 4, we stop at
r = l − 1 if tl−1 = aj and let tl = aj otherwise (and then stop with r = l). In all
cases, tr − tr−1 ≤ 2n−r−2j . Let y1 < y2 . . . be II’s responses. As in Case 7, we may
appeal to Lemma 2.2 to see that each yr may be assumed to be a multiple of ωj .
Furthermore, we may suppose that there are t′1 < t′2 < . . . such that t′1 ≥ 1 and
yr = ωi · ai + . . .+ ωj+1 · aj+1 + ωj · t′r. We mainly have to justify this for y1. The
only other options are that y′1 ≤ ωi · ai + . . . + ωj+1 · aj+1, when the argument of
Case 7 applies, in the case of strict inequality appealing to j < n−3

2 .
Since bj < aj , t

′
1 < t1, or there is l such that t′l+1 − t′l < tl+1 − tl. In the first

case we appeal to Lemma 2.9(ii) to deduce that α<x1 6≡n−1 β
<y1 , and in the latter

to Lemma 2.3(ii) to deduce that (xl, xl+1) 6≡n−l−1 (yl, yl+1), so in each case, player
I wins in the remaining moves.

Case 8B: j < i, ak 6= 0 for some k < j, j ≥ n−3
2 , and 2n−1−2j−4 ≤ bj < 2n−2j−5.

Since j < n
2 − 1, in fact j = n−3

2 and i = n−1
2 . By clauses (1) and (3), ai ≤ 2,

and if ai = 2, then ai−1 ≤ 3, in each case bi = ai and bi−1 < ai−1. If ai = 1, then
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we follow the proof of Case 8A, noting that t1 = 2n−2j−1 − 4 = 0, so that x1 = ωi,
and Lemma 2.2 ensures that y1 may be assumed to be a multiple of ωi too, hence
equal to ωi.

So we concentrate on the case ai = 2, bi−1 < ai−1 ≤ 3. Player I plays x1 = ωi · 2
and by Lemma 2.2, II must play y1 = ωi or ωi · 2. If y1 = ωi, player I now plays
yr = ωi + ωi−1(r − 1) in β as long as necessary, and as in previous proofs, player
II is unable to respond for all of the remaining n− 1 moves. If however y1 = ωi · 2,
then player I plays x2 = ωi · 2 + ωi−1(bi−1 + 1). By Lemma 2.2, II must play a
multiple y2 of ωi−1 which is ≤ ωi ·2+ωi−1 ·bi−1. If y2 = ωi ·2+ωi−1 then I wins on
(x1, x2) and (y1, y2) by Theorem 1.4(iii) using ωi−1 6≡2(i−1)+1 ω

i−1 · 2. Otherwise

y2 = ωi ·2+ωi−1 ·2 so bi−1 = 2 and ai−1 = 3. Now player I plays x3 = ωi ·2+ωi−1 ·3,
and since i− 1 < n−2

2 , II must play a multiple of ωi−1, which is impossible.

Case 9: j < i, ak 6= 0 for some k < j, and 2n−2j − 5 ≤ bj .
Since bj < aj ≤ 2n−2j − 4, it follows that aj = 2n−2j − 4 and bj = 2n−2j − 5.

We follow the method of Case 6. Let k ≤ j − 1 be the greatest (if any) such that
ak 6= bk or ak = bk 6= 3. As before, it follows that ak ≤ 3, and so in the second case
ak = bk ≤ 2, and for k < l ≤ j − 1, al = bl = 3, so by Lemma 2.11(ii), α 6≡n β. If
ak 6= bk, we can conclude by appealing to Case 2, since k < n

2 −2 and 2n−2−2k ≥ 4,

so that ak < 2n−2−2k (and if bk < ak, also bk < 2n−2−2k). Thus the fact that the
coefficients which control the situation belong to smaller powers of ω than in the
previous cases, means that we avoid the two extra cases, corresponding to Cases
5B and 6.

Theorem 2.13. The members of Ω′n are the minimal representatives of the n-
equivalence classes of monochromatic ordinals.

Proof. We have to show that for any ordinal α, the least ordinal α′ which is n-
equivalent to α lies in Ω′n, and also that no two members of Ω′n are n-equivalent.
By Corollary 2.4, α′ may be written in the form ωt ·at+ωt−1 ·at−1 + . . .+ω ·a1 +a0

where ai ≤ 2n−2i. Since the truth of the result for n = 0, 1, 2 is verified from the
lists explicitly given earlier, we assume that n ≥ 3.

We first establish the numbered properties of α′, (1) having already been done.

(2) If there is j > i such that aj 6= 0 and i ≤ n−3
2 , then by Lemma 2.9(i),

ai ≤ 2n−2i− 4. Since j ≤ n
2 , the only other possibility is that n is even and

i = n
2 − 1, in which case 2n−2i − 4 = 0, and we appeal to Lemma 2.6(i),

since it implies that if at−1 > 0 then ωt−1(ω + at−1) ≡n ωt−1 · 4, which
would contradict the minimality of α′.

(3) If ai+1 = 2n−2(i+1), then ai ≤ 3 because if ai ≥ 4 then by Lemma 2.7(i),
which may be written in the form ωi+1 · k + ωi · m ≡n ωi+1(2n−2(i+1) −
1) + ωi ·m (assuming that k ≥ 2n−2(i+1) and m ≥ 4), we could reduce the
coefficient of ωi+1, contrary to minimality of α′.

(4) If 2n−2(i+1) − 4 = 0 then n = 2(i+ 2) so n is even and i = n
2 − 2. We may

use Corollary 2.8(i), since if ai ≥ 4 then we could remove the term in ωt.
Otherwise we use Lemma 2.11(i), (replacing i by i+ 1), which tells us that
ωj + ωi+1(2n−2(i+1) − 4) + ωi · 4 ≡n ωj + ωi+1(2n−2(i+1) − 5) + ωi · 4, so if
ai ≥ 4, we could reduce α′ by decreasing the coefficient of ωi+1.

(5) If ai+1 = 3 and 3 is an n-optimal coefficient for ωi+1, then by Lemmas
2.10(i) and 2.11(i), and the definition of ‘n-optimality’, ai ≤ 3.

(6) a0 ≤ 2n − 1 by Lemma 1.3 if aj = 0 for all j > i.

The converse statement, that any α = ωi · ai + ωi−1 · ai−1 + . . . + ω · a1 + a0

fulfilling all clauses is optimal, where ai 6= 0, follows from Lemma 2.12.



16 F. MWESIGYE AND J.K. TRUSS

To illustrate the above rather complicated proof, we consider the following cases:
n = 4, 5 and 6. We can say that each of these is generated by a finite list of ‘maximal’
polynomials in ω. (Here ‘maximality’ is with respect to the partial ordering given
by

∑
ωi · ai �

∑
ωi · bi if for all i, ai ≥ bi.) For n = 4 this list is

15, ω · 3 + 12, ω · 4 + 3, ω2 + 3,

for n = 5 the list is

31, ω·7 + 28, ω·8 + 3, ω2·2 +ω·2 + 28, ω2·2 +ω·3 + 3, ω2 +ω·3 + 28, ω2 +ω·4 + 3,

and for n = 6 it is

63, ω · 15 + 60, ω · 16 + 3, ω2 · 3 + ω · 11 + 60, ω2 · 3 + ω · 12 + 3, ω2 · 4 + ω · 3 + 3,
ω2 · 4 + ω · 2 + 60, ω3 + ω · 2 + 60, ω3 + ω · 3 + 3.

What we mean is that the full list of optimal ordinals is obtained from these
‘maximal’ ones by allowing the integer coefficients to decrease, so if ωr · ar +ωr−1 ·
ar−1 + . . . ω · a1 + a0 is one of the maximal ones, then the corresponding entries in
the full list are those of the form ωr · br + ωr−1 · br−1 + . . . ω · b1 + b0 where bi ≤ ai
for each i.

Examining the case of n = 6 in detail, we see that t = 3, and by Corollary 2.4,
every ordinal is 6-equivalent to one of the form ω3 · a3 + ω2 · a2 + ω · a1 + a0 where
a3 ≤ 1, a2 ≤ 4, a1 ≤ 16 and a0 ≤ 64. In the first case, a3 = 1, in which case, by
(2), a2 = 0, and by applying (4) to i = 1, a1 ≤ 3. In all cases a0 ≤ 60 by (4), and if
a1 = 3 then a0 ≤ 3 by (5). This is because, by definition, 3 is a 6-optimal coefficient
for ω in ω3 + ω · 3 + a0. Now considering the case in which a3 = 0, we look at the
various possibilities for a2. If a2 = 4 then a1 ≤ 3 by (3) and if a1 = 3 then a0 ≤ 3
by (5). For by definition, 3 is a 6-optimal coefficient for ω in ω2 · 4 + ω · 3 + a0. If
however 0 < a2 ≤ 3 then a1 ≤ 12 by clause (2). If a1 = 12 then a0 ≤ 3 by clause
(4), and if a1 ≤ 11 then a0 ≤ 60 by (2). Next suppose that a3 = a2 = 0. Then
if a1 = 16, it follows by (3) that a0 ≤ 3, and if 0 < a1 ≤ 15 then a0 ≤ 60 by (2).
Finally, if a3 = a2 = a1 = 0, then a0 ≤ 63 by (6). The other cases can be similarly
treated.

We conclude this section by remarking that there is a computable function f
such that for each n, f(n) lists minimal representatives of the n-equivalence classes
of ordinals. To make sense of this, we should encode the ordinals in some standard
way; in this case we can just regard the ordinal α = ωk · ak + ωk−1 · ak−1 + ωk−2 ·
ak−2 + . . . + ω · a1 + a0 as represented by the finite sequence (ak, ak−1, . . . , a1, a0)
which in turn may be prime power encoded if desired. The function f is then
obtained by letting f(n) list (codes for) the members of Ω′n in increasing order.
The fact that f is computable follows from the very explicit definition given of Ω′n.

3. m-coloured ordinals up to n-equivalence

In this section, we give an analysis of m-coloured ordinals up to n-equivalence. It
is a triviality that there is a countable ordinal α such that every m-coloured ordinal
(X,<,F ) is n-equivalent to some m-coloured ordinal less than α. Namely, for each
(X,<,F ) we find a suitable countable ordinal by the Löwenheim–Skolem Theorem
(which is even elementarily equivalent to X), and as there are only finitely many
≡n-classes, we can just take the maximum of these ordinals. The point however is
to find a much smaller, and explicit bound, in the style of [4]. We would like to find
a complete and explicit set of representatives as in the monochromatic case in the
previous section, but this seems too ambitious at present. Some precise information
was given in [4] for 2 moves, but for larger values of n, things get considerably more
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complicated. We are able to obtain the same overall bound as in the monochromatic
case, namely, ωω. However, this is approached much more rapidly by the individual
upper bounds provided by our main theorem as the number of moves n increases,
and it seems to us likely that the true value will be considerably lower.

A key tool will be the ‘cutting lemma’ as given in [4], which applies also in the
infinite case, by the same proof as there, and this says the following.

Lemma 3.1. Let A be an m-coloured linear order and let a and b be elements of
A such that a < b satisfying the following conditions:

(i) F (a) = F (b),
(ii) a and b determine the same n-character, that is, 〈[A<a]n, [A

>a]n〉 =
〈[A<b]n, [A>b]n〉,

(iii) for every x ∈ A with a < x ≤ b, there is y ≤ a of the same colour as x and
such that 〈[A<x]n, [A

>x]n〉 = 〈[A<y]n, [A
>y]n〉.

Then A is (n+ 1)-equivalent to B = A− (a, b].

We have another ‘cutting lemma’, relevant just for the case of limit ordinals,
which is our main new tool over the finite case. Before we can prove this, an
auxiliary result is required, which actually applies to all coloured linear orders, not
just ordinals.

Lemma 3.2. Let A be an m-coloured linear order and let a1 < a2 and b1 < b2
be elements of A such that a1 and b1 have the same n-characters, and so do a2

and b2, where n ≥ 1, and such that the families of n-characters of members of
(a1, a2) and (b1, b2) are equal to the same set Cn, and there are at least 2n − 1
blocks of occurrences of members of Cn in each of (a1, a2) and (b1, b2); where this
means that (a1, a2) and (b1, b2) may each be written as the disjoint union of this
number of convex subsets on each of which all members of Cn are represented. Then
(a1, a2) ≡n (b1, b2).

Proof. We use induction. For the basis case, n = 1, so there is at least one block of
occurrences of C1 (which in this case is given anyhow by definition of C1), and the
information given by the character is just the colour. Player II can therefore win
in one move by playing a point of the same colour as player I did.

Now assume the result for n, and we indicate how player II can play to win the
(n + 1)-move game between (a1, a2) and (b1, b2), assuming that there are at least
2n+1 − 1 blocks of occurrences of members of Cn+1 in each of (a1, a2) and (b1, b2).
Without loss of generality player I starts by playing x1 ∈ (a1, a2).

First suppose that (a1, x1) and (x1, a2) each have at least 2n−1 blocks of occur-
rences of members of Cn+1. Since 2n+1 − 1 = (2n − 1) + 1 + (2n − 1), player II can
play a point y1 (of the ‘middle’ block) having the same (n+1)-character as x1. Now
from the fact that (a1, x1) and (x1, a2) exhibit precisely the same (n+1)-characters
it follows that they also exhibit the same n-characters, so the induction hypothesis
assures us that (a1, x1) ≡n (b1, y1) and (x1, a2) ≡n (y1, b2), and so II can win.

Next suppose that (a1, x1) does not have 2n−1 blocks of occurrences of members
of Cn+1 (and a similar argument applies if (x1, a2) does not have 2n − 1 blocks).
Since a1 and b1 have the same (n+ 1)-character, (a1,∞) ≡n+1 (b1,∞), so there is
y ∈ (b1,∞) of the same colour as x1 such that (a1, x1) ≡n (b1, y) and (x1,∞) ≡n
(y,∞). Also (−∞, x1) = (−∞, a1) ∪ {a1} ∪ (a1, x1) ≡n (−∞, b1) ∪ {b1} ∪ (b1, y) =
(−∞, y), which shows that x1 and y have the same n-character.

If (b1, y) does not contain 2n−1 blocks of occurrences of members of Cn+1, then
y < b2, and furthermore, each of (x1, a2) and (y, b2) contains at least 2n − 1 blocks
of occurrences of members of Cn+1. Since x1 and y have the same n-character, we
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may apply the induction hypothesis to deduce that (x1, a2) ≡n (y, b2), and so II
wins by playing y1 = y on his first move.

Otherwise (b1, y) contains at least 2n − 1 blocks of occurrences of members of
Cn+1. Player II now plays a point y1 in the middle block of (b1, b2) having the same
n-character as y (which lies in Cn since the n-characters of x1 and y are equal). By
the induction hypothesis, (b1, y) ≡n (b1, y1), and it follows that (a1, x1) ≡n (b1, y1).
Also both (x1, a2) and (y1, b2) contain at least 2n − 1 blocks of occurrences of
members of Cn+1, so by induction hypothesis, they are n-equivalent. By applying
the same argument as in the previous paragraph, x1 and y1 have the same n-
character, so player II wins by playing this y1.

We can now present our main new ‘cutting’ lemma.

Lemma 3.3. Let A be an m-coloured ordinal, Λ an ordinal, and for each λ ∈ Λ let
aλ and bλ be elements of A which are limit ordinals such that λ < µ⇒ aλ < bλ < aµ
and for each limit ordinal λ ∈ Λ, supµ<λ bµ < aλ. Suppose further that the sets
of n-characters which occur cofinally in (−∞, aλ) and (−∞, bλ) are equal to the
same set Cλ, and the n-characters of all points of [aλ, bλ) also lie in Cλ. Then A
is (n+ 1)-equivalent to B = A−

⋃
λ∈Λ[aλ, bλ).

Proof. First we choose cλ < aλ so that all n-characters arising in [cλ, aλ) (and
hence also in [cλ, bλ)) lie in Cλ. This is possible since there are only finitely many
characters in all, so there is some point < aλ beyond which any n-characters which
do not occur cofinally in (−∞, aλ) no longer arise. Furthermore, the hypothesis
allows us to suppose that supµ<λ bµ < cλ.

We describe a winning strategy for player II in the (n+ 1)-move game on A and
B. We write xi and yi for the ith moves played in A, B respectively. The map
taking xi to yi will be order-preserving (and all xi will be distinct). Furthermore, if
xi, yi have been chosen for i ≤ k, and I is an open interval determined by adjacent
xi, xi′ or between xi and ±∞, and J is the corresponding interval determined by
the yi, then I ≡n+1−k J . Also, xi, yi will have the same colour.

Player II can clearly play on his first move so that x1 and y1 have the same
n-characters, and either x1 = y1, or x1 ∈ [aλ, bλ) and y1 ∈ (cλ, aλ). The fact that
this is possible follows from the choice of cλ, and the cofinality hypotheses.

Now suppose that xi, yi have been chosen for i ≤ k, and we have to say how
player II can respond to any possible move by player I on his (k + 1)th move.

Let I or J be the interval that I decides to play in (if he plays in A or B
respectively). By assumption, I ≡n+1−k J , and we consider the response to I’s
play made by player II using a strategy thereby given. Let xk+1 and y be the
moves thus played. If y ∈ B we just let yk+1 = y, and all hypotheses carry through
to the next step. If however y 6∈ B (in which case player I must have played
xk+1) then for some λ, y ∈ [aλ, bλ). By cofinality of the occurrences of points of
n-character lying in Cλ in (aλ, bλ) we may find a point yk+1 of (max(yi, cλ), aλ)
having the same n-character as y, and with sufficiently many blocks of occurrences
of Cλ in (max(yi, cλ), yk+1). II plays this yk+1 on his (k + 1)th move. Since xk+1

and y have the same (n− k)-character and y and yk+1 have the same n-character,
it follows that xk+1 and yk+1 have the same (n − k)-character. The fact that
(xi, xk+1) ≡n−k (yi, yk+1) and (xk+1, xi′) ≡n−k (yk+1, yi′) follows from Lemma 3.2,
so the induction goes through.

The main theorem is now as follows:

Theorem 3.4. For any positive integers m and n, there is a finite k such that
for any m-coloured ordinal there is an n-equivalent m-coloured ordinal less than
ωk · 2k2.
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Proof. The case n = 1 is easy and completely described in [4]. In fact, two coloured
linear orders are 1-equivalent if and only if they exhibit precisely the same sets of
colours, so we get (finite) optimal representatives of size at most m.

Moving on to n > 1, let (A,<, F ) be an m-coloured ordinal of minimal order-type
in its ≡n-class. We start by considering the occurrences of the (n − 1)-characters
appearing in A. There are just finitely many, which from now on we refer to just
as ‘characters’ and so we may find the first occurrence of each, and let these be
x0 < x1 < x2 < . . . < xk−1 (where clearly x0 and x1 are the first two members of A).
For ease we also let xk = +∞, so that we can refer to the intervals Ii = [xi, xi+1)
for all i < k.

Now by choice of the xi as the first occurrences of the characters, any character
arising in (xi, xi+1) already occurs in (−∞, xi]. Hence if any character arises more
than once in Ii, then we may use Lemma 3.1 to cut out the section in between.
Unlike in the finite case, this may however not reduce the order-type, but it does
enable us to make some deductions about the form that A has, or may be assumed
to have. Let us assume then that all characters of Ii appear with minimal order-
type. For a particular character, write the order-type of its occurrences in Ii in
Cantor normal form as ωα0 · a0 + ωα1 · a1 + . . .+ ωαl · al where α0 > α1 > . . . > αl
and ai ∈ ω. If l > 0 then we may cut a section from ωα0 · a0 to ωαl · al and achieve
a strictly smaller order-type, contrary to assumption. Hence l = 0. A similar
argument applies if a0 > 1. We therefore deduce that the character appears with
order-type of the form ωα for some ordinal α (which is 1 if α = 0).

We note that it also follows that Ii is expressible as a finite union of intervals
of the form Jj = [yj , yj+1) where no character appears in more than one Jj , and
each character of Jj appears cofinally (the case |Jj | = 1 is allowed). To achieve
this, the points yj+1 are taken to be the suprema of the occurrences of characters.
Given this, to see that no character appears in more than one Jj , observe that
no character which appears in [yj+1, xi+1) can also appear in (xi, yj+1). For if it
did, we could apply Lemma 3.1 and reduce the order-type of the occurrences of the
characters having supremum yj+1, contrary to the assumption that the order-types
of occurrences of all characters have been minimized.

We emphasize that the same character can (and will) occur in more than one of
the intervals Ii, but for fixed i, no character will occur in more than one Jj .

To conclude the proof, we show by induction on r ≥ 1 that Jj has a subset Br
such that A ≡n A − Br and for any non-empty set X of r characters, all convex
subsets of Jj −Br exhibiting only members of X have order-type < ωr · 2.

For the basis case, r = 1, and let c be a single character. Define ∼ on Jj by
x ∼ y if x = y, or if all points of [x, y] (or [y, x] if y < x) have character c. Then
the ∼-classes are convex subsets of Jj . Let [β, γ) be a ∼-class, and λ1 its least
limit ordinal, if any, and γ = λ2 + s for finite s, where λ2 is a limit ordinal (or
0). We may apply Lemma 3.3 to cut out [λ1, λ2) from all ∼-classes containing a
limit ordinal, giving a subset in which all ∼-classes have order-type < ω · 2. Note
that the requirement that the supremum of the right hand endpoints of the cut out
intervals is strictly less than the next one is automatically fulfilled, since each λ1 is
immediately preceded by a non-empty block of points all having character c. Now
repeat this for each of the remaining characters and let B1 be the union of all the
sets cut out.

For the induction step, assume that we have found Br and that 1 ≤ r < k. Let
X be a set of characters of size r + 1, and define ∼ on Jj − Br by letting x ∼ y
if x = y, or if all points of [x, y] (or [y, x] if y < x) have character in X. By
appropriately cutting segments from each ∼-class, they will have the form [β, γ)
where all members of X are cofinal in at most one limit ordinal in [β, γ]. This
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means that for all other limit ordinals λ in this interval, the set of characters which
occur cofinally in [β, λ) is a proper subset of X. We show that the order-type of
[β, γ) is less than ωr+1 · 2. If not, then there is a limit ordinal λ in [β, γ] such that
[δ, λ) ∼= ωr+1 for some δ ∈ [β, λ) and such that the set Y of characters which occur
in [δ, λ) is a proper subset of X, but this contradicts the induction hypothesis. Now
repeat this argument finitely many times for all sets of characters of size r+ 1, and
this gives the induction step by taking for Br+1 the union of all the sets removed
at these finitely many steps.

Finally we look at the case where r = k which has now been established. We have
a set of order-type less than ωk · 2 which is n-equivalent to Jj . This gives a bound
ωk · 2k2 for the order-type of A, where k is the number of all (n − 1)-characters.
This is an explicit bound, but since the number of (n − 1)-characters grows very
fast, we believe that it is much greater than the optimum.
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