Browsing by Author "Basalirwa, Daniel"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Analysis of sesame seed production and export trends; challenges and strategies towards increasing production in Uganda(EDP Sciences, 2021-01-01) Wacal, Cosmas; Basalirwa, Daniel; Okello-Anyanga, Walter; Murongo, Marius Flarian; Namirembe, Caroline; Malingumu, RichardSesame (Sesamum indicum L.) is one of the most ancient oilseed crops cultivated for its edible oil and uses in food. Sesame seeds are very nutritious and confer health benefits. However, its potential production in Uganda has not been fully realized. The objective of this review was to summarize the trends in sesame production, export quantity, export value, challenges, and strategies for sustainable sesame seed production in Uganda. The review revealed the sesame seed production and area harvested generally increased from 1996 to 2007 but significantly decreased between 2008 and 2018. The review also revealed that while the export quantities and values were low, they gradually increased from 2009 to 2016. The decreased production between 2008 and 2016 could have been due to challenges such as pests and diseases, loss of soil fertility, prolonged drought, poor agronomic practices, poor yielding varieties, and lack of access to credit. Therefore, it is recommended to improve breeding programs and soil management practices; strengthen agricultural credits and extension services to support marketing of sesame seeds; and improve agronomic practices and farmer knowledge on improved techniques such as sowing methods, plant spacing, intercropping practices, pests and disease control measures. These could boost sesame production in Uganda given the high domestic and global demand for sesame seeds and provide an opportunity to expand sesame production throughout Uganda. Research should focus on how to increase seed yield on farmers’ fields and bridge the yield gap between researchers and farmers while adopting good agronomic practices.Item Low cost maize stover biochar as an alternative to inorganic fertilizer for improvement of soil chemical properties, growth and yield of tomatoes on degraded soil of Northern Uganda(Springer Nature, 2023-10-07) Wacal, Cosmas; Basalirwa, Daniel; Byalebeka, John; Tsubo, Mitsuri; Nishihara, EijiSoil fertility decline due to nutrient mining coupled with low inorganic fertilizer usage is a major cause of low crop yields across sub-Saharan Africa. Recently, biochar potential to improve soil fertility has gained significant attention but there are limited studies on the use of biochar as an alternative to inorganic fertilizers. In this study, we determined the effect of maize stover biochar without inorganic fertilizers on soil chemical properties, growth and yield of tomatoes (Solanum lycopersicum L.). A field experiment was conducted in 2022 for two consecutive seasons in Northern Uganda. The experiment included five treatments; inorganic fertilizer (control), biochar applied at rates of 3.5, 6.9, 13.8 and 27.6 t ha-1. In this study, maize stover biochar improved all the soil chemical properties. Compared to the control, pH significantly increased by 27% in the 27.6 t ha-1 while total N increased by 35.6% in the 13.8 t ha-1. Although P was significantly low in the 3.5 t ha-1, 6.9 t ha-1 and 13.8 t ha-1, it increased by 3.9% in the 27.6 t ha-1. Exchangeable K was significantly increased by 42.7% and 56.7% in the 13.8 t ha-1 and 27.6 t ha-1 respectively. Exchangeable Ca and Mg were also higher in the biochar treatment than the control. Results also showed that plant height, shoot weight, and all yield parameters were significantly higher in the inorganic fertilizer treatment than in the 3.5, 6.9, and 13.8 t ha-1 treatments. Interestingly, maize stover biochar at 27. 6 t ha-1 increased fruit yield by 16.1% compared to the control suggesting it could be used as an alternative to inorganic fertilizer. Maize stover biochar applied at 27.6 t ha-1 improved soil chemical properties especially pH, N, P and K promoting growth and yield of tomatoes. Therefore, maize stover biochar could be recommended as an alternative to expensive inorganic fertilizers for tomato production in Northern Uganda.