Repository logo
Communities & Collections
All of UMU-IR
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nishihara, Eiji"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Agronomic potential of maize stover biochar under cowpea–maize sequential cropping in Northern Uganda
    (Springer Nature Link, 2024-09-12) Basalirwa, Daniel; Wacal, Cosmas; Murongo, Marius Flarian; Tsubo, Mitsuru; Nishihara, Eiji
    Biochar is a nature-based solution for sustainable agriculture but its potential adoption in some parts of sub-Saharan Africa is still minimal. In this study, we evaluated the agronomic potential of maize stover biochar in cowpea-maize sequential cropping in Uganda under field conditions. The treatments included; the common farmer practice of no inorganic fertilizer and no biochar (CTR), inorganic fertilizer (F), 10 t ha−1 biochar (B10), 40 t ha−1 biochar (B40), 10 t ha−1 biochar + inorganic Fertilizer (FB10), and 40 t ha−1 biochar + inorganic Fertilizer (FB40), arranged in a randomized complete block design (RCBD) with three replications. The results showed that cowpea seed yield was not significantly affected by biochar and fertilizer application but the haulm yield was significantly improved only in FB40 treatment. Maize grain and stover yield was significantly improved only in the FB40 treatment but biochar showed a high potential to also improve yield even without inorganic fertilizer. The potential for biochar to improve maize yield either in the presence or absence of fertilizers could be attributed to the residual soil fertility from cowpeas. In both seasons, biochar significantly improved soil pH, EC, SOC, total N, available P, exchangeable K and Ca, irrespective of fertilizer application. However, exchangeable Mg did not significantly vary among the treatments. This study further revealed that in cowpea-maize rotation, optimum yield could also be possible with sole biochar application. Therefore, instead of burning the maize stovers after harvest, farmers should convert the residues into biochar and return it to the soil so as to achieve sustainable food systems.
  • Loading...
    Thumbnail Image
    Item
    Low cost maize stover biochar as an alternative to inorganic fertilizer for improvement of soil chemical properties, growth and yield of tomatoes on degraded soil of Northern Uganda
    (Springer Nature, 2023-10-07) Wacal, Cosmas; Basalirwa, Daniel; Byalebeka, John; Tsubo, Mitsuri; Nishihara, Eiji
    Soil fertility decline due to nutrient mining coupled with low inorganic fertilizer usage is a major cause of low crop yields across sub-Saharan Africa. Recently, biochar potential to improve soil fertility has gained significant attention but there are limited studies on the use of biochar as an alternative to inorganic fertilizers. In this study, we determined the effect of maize stover biochar without inorganic fertilizers on soil chemical properties, growth and yield of tomatoes (Solanum lycopersicum L.). A field experiment was conducted in 2022 for two consecutive seasons in Northern Uganda. The experiment included five treatments; inorganic fertilizer (control), biochar applied at rates of 3.5, 6.9, 13.8 and 27.6 t ha-1. In this study, maize stover biochar improved all the soil chemical properties. Compared to the control, pH significantly increased by 27% in the 27.6 t ha-1 while total N increased by 35.6% in the 13.8 t ha-1. Although P was significantly low in the 3.5 t ha-1, 6.9 t ha-1 and 13.8 t ha-1, it increased by 3.9% in the 27.6 t ha-1. Exchangeable K was significantly increased by 42.7% and 56.7% in the 13.8 t ha-1 and 27.6 t ha-1 respectively. Exchangeable Ca and Mg were also higher in the biochar treatment than the control. Results also showed that plant height, shoot weight, and all yield parameters were significantly higher in the inorganic fertilizer treatment than in the 3.5, 6.9, and 13.8 t ha-1 treatments. Interestingly, maize stover biochar at 27. 6 t ha-1 increased fruit yield by 16.1% compared to the control suggesting it could be used as an alternative to inorganic fertilizer. Maize stover biochar applied at 27.6 t ha-1 improved soil chemical properties especially pH, N, P and K promoting growth and yield of tomatoes. Therefore, maize stover biochar could be recommended as an alternative to expensive inorganic fertilizers for tomato production in Northern Uganda.

Uganda Martyrs University copyright ©2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback