Hopf-Bifurcation Analysis of Pneumococcal Pneumonia with Time Delays
dc.contributor.author | Kamugisha Mbabazi, Fulgensia | |
dc.contributor.author | Mugisha, Joseph Y. T. | |
dc.contributor.author | Kimathi, Mark | |
dc.date.accessioned | 2019-03-15T10:06:59Z | |
dc.date.available | 2019-03-15T10:06:59Z | |
dc.date.issued | 2019-02-03 | |
dc.description.abstract | In this paper, a mathematical model of pneumococcal pneumonia with time delays is proposed. The stability theory of delay differential equations is used to analyze the model. The results show that the disease-free equilibrium is asymptotically stable if the control reproduction ratio Ro is less than unity and unstable otherwise. The stability of equilibria with delays shows that the endemic equilibrium is locally stable without delays and stable if the delays are under conditions. The existence of Hopf-bifurcation is investigated and transversality conditions are proved. The model results suggest that, as the respective delays exceed some critical value past the endemic equilibrium, the system loses stability through the process of local birth or death of oscillations. Further, a decrease or an increase in the delays leads to asymptotic stability or instability of the endemic equilibrium, respectively. The analytical results are supported by numerical simulations. | en_US |
dc.identifier.uri | https://doi.org/10.1155/2019/3757036 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12280/1448 | |
dc.language.iso | en | en_US |
dc.publisher | Hindawi | en_US |
dc.rights | Attribution-ShareAlike 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/us/ | * |
dc.subject | Model of pneumococcal pneumonia | en_US |
dc.subject | Stability theory of delay differential equations | en_US |
dc.subject | Hopf-bifurcation | en_US |
dc.title | Hopf-Bifurcation Analysis of Pneumococcal Pneumonia with Time Delays | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- KamugishaMbabazi_Science_Article_2019_Hopf-Bifurcation.pdf
- Size:
- 2.82 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: