Identifying patterns in urban housing density in developing countries using convolutional networks and satellite imagery

dc.contributor.authorSanya, Rahman
dc.contributor.authorMwebaze, Ernest
dc.date.accessioned2020-12-10T07:04:23Z
dc.date.available2020-12-10T07:04:23Z
dc.date.issued2020
dc.description.abstractThe use of Deep Neural Networks for remote sensing scene image analysis is growing fast. Despite this, data sets on developing countries are conspicuously absent in the public domain for benchmarking machine learning algorithms, rendering existing data sets unrepresentative. Secondly, current literature uses low-level semantic scene image class definitions, which may not have many relevant applications in certain domains. To examine these problems, we applied Convolutional Neural Networks (CNN) to high-level scene image classification for identifying patterns in urban housing density in a developing country setting. An end-to-end model training workflow is proposed for this purpose. A method for quantifying spatial extent of urban housing classes which gives insight into settlement patterns is also proposed. The method consists of computing the ratio between area covered by a given housing class and total area occupied by all classes. In the current work this method is implemented based on grid count, whereby the number of predicted grids for one housing class is divided by the total grid count for all classes. Results from the proposed method were validated against building density data computed on Open- StreetMap data. Our results for scene image classification are comparable to current state-of-the-art, despite focusing only on most difficult classes in those works. We also contribute a new satellite scene image data set that captures some general characteristics of urban housing in developing countries. The data set has similar but also some distinct attributes to existing data sets.en_US
dc.identifier.citationHeliyon - Cell Press Journalen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12280/2629
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofseriesHeliyon;Heliyon 6 (2020) e05617
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectComputer scienceen_US
dc.subjectHousing classificationen_US
dc.subjectUrban areasen_US
dc.subjectDeveloping countriesen_US
dc.subjectConvolutional neural networksen_US
dc.subjectSatellite imageryen_US
dc.titleIdentifying patterns in urban housing density in developing countries using convolutional networks and satellite imageryen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sanya_Article_Science_2020_identifying.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: