Finitely coloured ordinals
dc.contributor.author | Mwesigye, F. | |
dc.contributor.author | Truss, J. K | |
dc.date.accessioned | 2017-02-14T14:27:05Z | |
dc.date.available | 2017-02-14T14:27:05Z | |
dc.date.issued | 2010 | |
dc.description.abstract | Abstract. Two structures A and B are n-equivalent if player II has a winning strategy in the n-move Ehrenfeucht-fraïssé game on A and B. Ordinals and m-coloured ordinals are studied up to n-equivalence for various values of m and n. | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12280/360 | |
dc.language.iso | en | en_US |
dc.publisher | Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK | en_US |
dc.subject | Coloured linear order | en_US |
dc.subject | Coloured ordinal | en_US |
dc.title | Finitely coloured ordinals | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- MWESIGYE-F.-Finitely-coloured-ordinals.pdf
- Size:
- 332.54 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: